File size: 3,961 Bytes
df82c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import re
import requests
import docx2txt
from io import StringIO
from PyPDF2 import PdfFileReader

from bs4 import BeautifulSoup
from nltk.tokenize import sent_tokenize

emoji_pattern = re.compile(
    "["
    u"\U0001F600-\U0001F64F"  # emoticons
    u"\U0001F300-\U0001F5FF"  # symbols & pictographs
    u"\U0001F680-\U0001F6FF"  # transport & map symbols
    u"\U0001F1E0-\U0001F1FF"  # flags (iOS)
    u"\U00002702-\U000027B0"
    u"\U000024C2-\U0001F251"
    "]+",
    flags=re.UNICODE,
)


def clean_text(x):
    # x = x.lower()  # lowercase
    x = x.encode("ascii", "ignore").decode()  # unicode
    x = re.sub(r"https*\S+", " ", x)  # url
    x = re.sub(r"@\S+", " ", x)  # mentions
    x = re.sub(r"#\S+", " ", x)  # hastags
    # x = x.replace("'", "")  # remove ticks
    # x = re.sub("[%s]" % re.escape(string.punctuation), " ", x)  # punctuation
    # x = re.sub(r"\w*\d+\w*", "", x)  # numbers
    x = re.sub(r"\s{2,}", " ", x)  # over spaces
    x = emoji_pattern.sub(r"", x)  # emojis
    x = re.sub("[^.,!?A-Za-z0-9]+", " ", x)  # special charachters except .,!?

    return x


def fetch_article_text(url: str):

    r = requests.get(url)
    soup = BeautifulSoup(r.text, "html.parser")
    results = soup.find_all(["h1", "p"])
    text = [result.text for result in results]
    ARTICLE = " ".join(text)
    ARTICLE = ARTICLE.replace(".", ".<eos>")
    ARTICLE = ARTICLE.replace("!", "!<eos>")
    ARTICLE = ARTICLE.replace("?", "?<eos>")
    sentences = ARTICLE.split("<eos>")
    current_chunk = 0
    chunks = []
    for sentence in sentences:
        if len(chunks) == current_chunk + 1:
            if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500:
                chunks[current_chunk].extend(sentence.split(" "))
            else:
                current_chunk += 1
                chunks.append(sentence.split(" "))
        else:
            print(current_chunk)
            chunks.append(sentence.split(" "))

    for chunk_id in range(len(chunks)):
        chunks[chunk_id] = " ".join(chunks[chunk_id])

    return ARTICLE, chunks


def preprocess_text_for_abstractive_summarization(tokenizer, text):
    sentences = sent_tokenize(text)

    # initialize
    length = 0
    chunk = ""
    chunks = []
    count = -1
    for sentence in sentences:
        count += 1
        combined_length = (
            len(tokenizer.tokenize(sentence)) + length
        )  # add the no. of sentence tokens to the length counter

        if combined_length <= tokenizer.max_len_single_sentence:  # if it doesn't exceed
            chunk += sentence + " "  # add the sentence to the chunk
            length = combined_length  # update the length counter

            # if it is the last sentence
            if count == len(sentences) - 1:
                chunks.append(chunk.strip())  # save the chunk

        else:
            chunks.append(chunk.strip())  # save the chunk

            # reset
            length = 0
            chunk = ""

            # take care of the overflow sentence
            chunk += sentence + " "
            length = len(tokenizer.tokenize(sentence))

    return chunks


def read_pdf(file):
    pdfReader = PdfFileReader(file)
    count = pdfReader.numPages
    all_page_text = ""
    for i in range(count):
        page = pdfReader.getPage(i)
        all_page_text += page.extractText()

    return all_page_text


def read_text_from_file(file):

    # read text file
    if file.type == "text/plain":
        # To convert to a string based IO:
        stringio = StringIO(file.getvalue().decode("utf-8"))

        # To read file as string:
        file_content = stringio.read()

    # read pdf file
    elif file.type == "application/pdf":
        file_content = read_pdf(file)

    # read docx file
    elif (
        file.type
        == "application/vnd.openxmlformats-officedocument.wordprocessingml.document"
    ):
        file_content = docx2txt.process(file)

    return file_content