File size: 5,584 Bytes
e9f3e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# coding=utf-8
# Copyright The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VLE model configuration"""

import copy

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from transformers.models.auto.configuration_auto import AutoConfig
from transformers.models.clip.configuration_clip import CLIPVisionConfig
from typing import Union, Dict

logger = logging.get_logger(__name__)


class VLEConfig(PretrainedConfig):
    r"""
    [`VLEConfig`] is the configuration class to store the configuration of a
    [`VLEModel`]. It is used to instantiate [`VLEModel`] model according to the
    specified arguments, defining the text model and vision model configs.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        text_config (`dict`):
            Dictionary of configuration options that defines text model config.
        vision_config (`dict`):
            Dictionary of configuration options that defines vison model config.
        #TODO
        logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
            The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
        kwargs (*optional*):
            Dictionary of keyword arguments.

    Examples:

    ```python
    >>> from transformers import ViTConfig, BertConfig
    >>> from configuration_vle import VLEconfig
    >>> from modeling_vle import VLEModel
    >>> # Initializing a BERT and ViT configuration
    >>> config_vision = ViTConfig()
    >>> config_text = BertConfig()

    >>> config = VLEConfig.from_vision_text_configs(config_vision, config_text) #TODO

    >>> # Initializing a BERT and ViT model (with random weights)
    >>> model = VLEModel(config=config)

    >>> # Accessing the model configuration
    >>> config_vision = model.config.vision_config
    >>> config_text = model.config.text_config

    >>> # Saving the model, including its configuration
    >>> model.save_pretrained("vit-bert")

    >>> # loading model and config from pretrained folder
    >>> vision_text_config = VLEConfig.from_pretrained("vit-bert")
    >>> model = VLEModel.from_pretrained("vit-bert", config=vision_text_config)
    ```"""

    model_type = "vle"
    is_composition = True

    def __init__(
        self, 
        text_config: Union[PretrainedConfig, Dict],
        vision_config: Union[PretrainedConfig, Dict],
        num_token_types=2,
        hidden_size=768,
        num_hidden_layers=6,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        classifier_dropout=None,
        **kwargs):
        super().__init__(**kwargs)

        if not isinstance(text_config,PretrainedConfig):
            text_model_type = text_config.pop('model_type')
            text_config = AutoConfig.for_model(text_model_type, **text_config)
        self.text_config = text_config

        if not isinstance(vision_config, PretrainedConfig):
            vision_model_type = vision_config.pop('model_type')
            if vision_model_type == "clip":
                vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config
            elif vision_model_type == "clip_vision_model":
                vision_config = CLIPVisionConfig(**vision_config)
            else:
                vision_config = AutoConfig.for_model(vision_model_type, **vision_config)
            self.vision_config = vision_config
        else:
            vision_model_type = vision_config.model_type
            if vision_model_type== "clip":
                vision_config = vision_config.vision_config
            self.vision_config = vision_config



        # co-attention
        self.num_token_types=num_token_types
        self.hidden_size=hidden_size
        self.num_hidden_layers=num_hidden_layers
        self.num_attention_heads=num_attention_heads
        self.intermediate_size=intermediate_size
        self.hidden_act=hidden_act
        self.hidden_dropout_prob=hidden_dropout_prob
        self.attention_probs_dropout_prob=attention_probs_dropout_prob
        self.initializer_range=initializer_range
        self.layer_norm_eps=layer_norm_eps
        self.classifier_dropout=classifier_dropout


    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].

        Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = copy.deepcopy(self.__dict__)
        output["vision_config"] = self.vision_config.to_dict()
        output["text_config"] = self.text_config.to_dict()
        output["model_type"] = self.__class__.model_type
        return output