File size: 13,384 Bytes
d25b2e6
e0b1273
 
 
 
 
 
 
 
 
 
 
 
ab4e488
e0b1273
 
 
 
 
 
 
 
 
9395e21
e0b1273
 
 
 
 
 
ab4e488
 
89165e2
ab4e488
e0b1273
 
 
 
 
 
 
 
 
 
 
 
df8ede9
 
 
 
 
 
e0b1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c4042b
e0b1273
 
 
ab4e488
e0b1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfdbbe
e0b1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfdbbe
e0b1273
 
 
 
 
 
0cfdbbe
 
ff2f35f
 
 
 
0cfdbbe
e0b1273
 
 
 
 
 
 
 
 
 
 
 
 
 
433fc87
e0b1273
 
 
 
 
 
 
 
433fc87
e0b1273
433fc87
e0b1273
 
 
 
 
 
 
 
433fc87
ab4e488
 
 
0cfdbbe
ab4e488
 
 
 
 
 
0cfdbbe
e0b1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4e488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2cfe45
 
 
ab4e488
c2cfe45
 
 
e0b1273
0cfdbbe
e0b1273
 
 
0cfdbbe
e0b1273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab4e488
 
 
 
 
 
e0b1273
 
 
 
 
 
 
ab4e488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfdbbe
ab4e488
e0b1273
ab4e488
 
89165e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import spaces
import os
import gc
import gradio as gr
import numpy as np
import torch
import json
import config
import utils
import logging
from PIL import Image, PngImagePlugin
from datetime import datetime
from diffusers.models import AutoencoderKL
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

DESCRIPTION = "Animagine XL 3.1"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. </p>"
IS_COLAB = utils.is_google_colab() or os.getenv("IS_COLAB") == "1"
HF_TOKEN = os.getenv("HF_TOKEN")
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "0"
MIN_IMAGE_SIZE = int(os.getenv("MIN_IMAGE_SIZE", "512"))
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
OUTPUT_DIR = os.getenv("OUTPUT_DIR", "./outputs")

MODEL = os.getenv(
    "MODEL",
    "cagliostrolab/animagine-xl-3.1",
)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


def load_pipeline(model_name):
    vae = AutoencoderKL.from_pretrained(
        "madebyollin/sdxl-vae-fp16-fix",
        torch_dtype=torch.float16,
    )
    pipeline = (
        StableDiffusionXLPipeline.from_single_file
        if MODEL.endswith(".safetensors")
        else StableDiffusionXLPipeline.from_pretrained
    )
    
    pipe = pipeline(
        model_name,
        vae=vae,
        torch_dtype=torch.float16,
        custom_pipeline="lpw_stable_diffusion_xl",
        use_auth_token=HF_TOKEN,
    )

    pipe.to(device)
    return pipe


@spaces.GPU
def generate(
    prompt: str,
    negative_prompt: str = "",
    seed: int = 0,
    custom_width: int = 1024,
    custom_height: int = 1024,
    guidance_scale: float = 7.0,
    num_inference_steps: int = 28,
    sampler: str = "Euler a",
    aspect_ratio_selector: str = "896 x 1152",
    style_selector: str = "(None)",
    quality_selector: str = "Standard v3.1",
    use_upscaler: bool = False,
    upscaler_strength: float = 0.55,
    upscale_by: float = 1.5,
    add_quality_tags: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    generator = utils.seed_everything(seed)

    width, height = utils.aspect_ratio_handler(
        aspect_ratio_selector,
        custom_width,
        custom_height,
    )

    prompt = utils.add_wildcard(prompt, wildcard_files)

    prompt, negative_prompt = utils.preprocess_prompt(
        quality_prompt, quality_selector, prompt, negative_prompt, add_quality_tags
    )
    prompt, negative_prompt = utils.preprocess_prompt(
        styles, style_selector, prompt, negative_prompt
    )

    width, height = utils.preprocess_image_dimensions(width, height)

    backup_scheduler = pipe.scheduler
    pipe.scheduler = utils.get_scheduler(pipe.scheduler.config, sampler)

    if use_upscaler:
        upscaler_pipe = StableDiffusionXLImg2ImgPipeline(**pipe.components)
    metadata = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "resolution": f"{width} x {height}",
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "seed": seed,
        "sampler": sampler,
        "sdxl_style": style_selector,
        "add_quality_tags": add_quality_tags,
        "quality_tags": quality_selector,
    }

    if use_upscaler:
        new_width = int(width * upscale_by)
        new_height = int(height * upscale_by)
        metadata["use_upscaler"] = {
            "upscale_method": "nearest-exact",
            "upscaler_strength": upscaler_strength,
            "upscale_by": upscale_by,
            "new_resolution": f"{new_width} x {new_height}",
        }
    else:
        metadata["use_upscaler"] = None
        metadata["Model"] = {
            "Model": DESCRIPTION,
            "Model hash": "e3c47aedb0",
        }
    
    logger.info(json.dumps(metadata, indent=4))

    try:
        if use_upscaler:
            latents = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator,
                output_type="latent",
            ).images
            upscaled_latents = utils.upscale(latents, "nearest-exact", upscale_by)
            images = upscaler_pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                image=upscaled_latents,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                strength=upscaler_strength,
                generator=generator,
                output_type="pil",
            ).images
        else:
            images = pipe(
                prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator,
                output_type="pil",
            ).images

        if images:
            image_paths = [
                utils.save_image(image, metadata, OUTPUT_DIR, IS_COLAB)
                for image in images
            ]

            for image_path in image_paths:
                logger.info(f"Image saved as {image_path} with metadata")

        return image_paths, metadata
    except Exception as e:
        logger.exception(f"An error occurred: {e}")
        raise
    finally:
        if use_upscaler:
            del upscaler_pipe
        pipe.scheduler = backup_scheduler
        utils.free_memory()


if torch.cuda.is_available():
    pipe = load_pipeline(MODEL)
    logger.info("Loaded on Device!")
else:
    pipe = None

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.style_list}
quality_prompt = {
    k["name"]: (k["prompt"], k["negative_prompt"]) for k in config.quality_prompt_list
}

wildcard_files = utils.load_wildcard_files("wildcard")

with gr.Blocks(css="style.css", theme="NoCrypt/miku@1.2.1") as demo:
    title = gr.HTML(
        f"""<h1><span>{DESCRIPTION}</span></h1>""",
        elem_id="title",
    )
    gr.Markdown(
        f"""Gradio demo for [cagliostrolab/animagine-xl-3.1](https://huggingface.co/cagliostrolab/animagine-xl-3.1)""",
        elem_id="subtitle",
    )
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Row():
        with gr.Column(scale=2):
            with gr.Tab("Txt2img"):
                with gr.Group():
                    prompt = gr.Text(
                        label="Prompt",
                        max_lines=5,
                        placeholder="Enter your prompt",
                    )
                    negative_prompt = gr.Text(
                        label="Negative Prompt",
                        max_lines=5,
                        placeholder="Enter a negative prompt",
                    )
                    with gr.Accordion(label="Quality Tags", open=True):
                        add_quality_tags = gr.Checkbox(
                            label="Add Quality Tags", value=True
                        )
                        quality_selector = gr.Dropdown(
                            label="Quality Tags Presets",
                            interactive=True,
                            choices=list(quality_prompt.keys()),
                            value="Standard v3.1",
                        )
            with gr.Tab("Advanced Settings"):
                with gr.Group():
                    style_selector = gr.Radio(
                        label="Style Preset",
                        container=True,
                        interactive=True,
                        choices=list(styles.keys()),
                        value="(None)",
                    )
                with gr.Group():
                    aspect_ratio_selector = gr.Radio(
                        label="Aspect Ratio",
                        choices=config.aspect_ratios,
                        value="896 x 1152",
                        container=True,
                    )
                with gr.Group(visible=False) as custom_resolution:
                    with gr.Row():
                        custom_width = gr.Slider(
                            label="Width",
                            minimum=MIN_IMAGE_SIZE,
                            maximum=MAX_IMAGE_SIZE,
                            step=8,
                            value=1024,
                        )
                        custom_height = gr.Slider(
                            label="Height",
                            minimum=MIN_IMAGE_SIZE,
                            maximum=MAX_IMAGE_SIZE,
                            step=8,
                            value=1024,
                        )
                with gr.Group():
                    use_upscaler = gr.Checkbox(label="Use Upscaler", value=False)
                    with gr.Row() as upscaler_row:
                        upscaler_strength = gr.Slider(
                            label="Strength",
                            minimum=0,
                            maximum=1,
                            step=0.05,
                            value=0.55,
                            visible=False,
                        )
                        upscale_by = gr.Slider(
                            label="Upscale by",
                            minimum=1,
                            maximum=1.5,
                            step=0.1,
                            value=1.5,
                            visible=False,
                        )
                with gr.Group():
                    sampler = gr.Dropdown(
                        label="Sampler",
                        choices=config.sampler_list,
                        interactive=True,
                        value="Euler a",
                    )
                with gr.Group():
                    seed = gr.Slider(
                        label="Seed", minimum=0, maximum=utils.MAX_SEED, step=1, value=0
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Group():
                    with gr.Row():
                        guidance_scale = gr.Slider(
                            label="Guidance scale",
                            minimum=1,
                            maximum=12,
                            step=0.1,
                            value=7.0,
                        )
                        num_inference_steps = gr.Slider(
                            label="Number of inference steps",
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=28,
                        )
        with gr.Column(scale=3):
            with gr.Blocks():
                run_button = gr.Button("Generate", variant="primary")
            result = gr.Gallery(
                label="Result", 
                columns=1, 
                height='100%', 
                preview=True, 
                show_label=False
            )
            with gr.Accordion(label="Generation Parameters", open=False):
                gr_metadata = gr.JSON(label="metadata", show_label=False)
            gr.Examples(
                examples=config.examples,
                inputs=prompt,
                outputs=[result, gr_metadata],
                fn=lambda *args, **kwargs: generate(*args, use_upscaler=True, **kwargs),
                cache_examples=CACHE_EXAMPLES,
            )
    use_upscaler.change(
        fn=lambda x: [gr.update(visible=x), gr.update(visible=x)],
        inputs=use_upscaler,
        outputs=[upscaler_strength, upscale_by],
        queue=False,
        api_name=False,
    )
    aspect_ratio_selector.change(
        fn=lambda x: gr.update(visible=x == "Custom"),
        inputs=aspect_ratio_selector,
        outputs=custom_resolution,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=utils.randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            custom_width,
            custom_height,
            guidance_scale,
            num_inference_steps,
            sampler,
            aspect_ratio_selector,
            style_selector,
            quality_selector,
            use_upscaler,
            upscaler_strength,
            upscale_by,
            add_quality_tags,
        ],
        outputs=[result, gr_metadata],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch(debug=IS_COLAB, share=IS_COLAB)