File size: 7,207 Bytes
a8baba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from typing import Optional

import gradio as gr
import qrcode
import torch
from diffusers import (
    ControlNetModel,
    EulerAncestralDiscreteScheduler,
    StableDiffusionControlNetPipeline,
)
from gradio.components import Image, Radio, Slider, Textbox, Number
from PIL import Image as PilImage
from typing_extensions import Literal


def main():
    device = (
        'cuda' if torch.cuda.is_available() 
        else 'mps' if torch.backends.mps.is_available() 
        else 'cpu'
    )

    controlnet_tile = ControlNetModel.from_pretrained(
        "lllyasviel/control_v11f1e_sd15_tile",
        torch_dtype=torch.float16,
        use_safetensors=False,
        cache_dir="./cache"
    ).to(device)

    controlnet_brightness  = ControlNetModel.from_pretrained(
        "ioclab/control_v1p_sd15_brightness",
        torch_dtype=torch.float16,
        use_safetensors=True,
        cache_dir="./cache"
    ).to(device)

    def make_pipe(hf_repo: str, device: str) -> StableDiffusionControlNetPipeline:
        pipe = StableDiffusionControlNetPipeline.from_pretrained(
            hf_repo,
            controlnet=[controlnet_tile, controlnet_brightness],
            torch_dtype=torch.float16,
            cache_dir="./cache",
        )
        pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
        # pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
        return pipe.to(device)

    pipes = {
        "DreamShaper": make_pipe("Lykon/DreamShaper", device),
        # "DreamShaper": make_pipe("Lykon/DreamShaper", "cpu"),
        # "Realistic Vision V1.4": make_pipe("SG161222/Realistic_Vision_V1.4", "cpu"),
        # "OpenJourney": make_pipe("prompthero/openjourney", "cpu"),
        # "Anything V3": make_pipe("Linaqruf/anything-v3.0", "cpu"),
    }

    def move_pipe(hf_repo: str):
        for pipe_name, pipe in pipes.items():
            if pipe_name != hf_repo:
                pipe.to("cpu")
        return pipes[hf_repo].to(device)

    def predict(
        model: Literal[
            "DreamShaper",
            # "Realistic Vision V1.4",
            # "OpenJourney",
            # "Anything V3"
        ],
        qrcode_data: str,
        prompt: str,
        negative_prompt: Optional[str] = None,
        num_inference_steps: int = 100,
        guidance_scale: int = 9,
        controlnet_conditioning_tile: float = 0.25,
        controlnet_conditioning_brightness: float = 0.45,
        seed: int = 1331,
    ) -> PilImage:
        generator = torch.Generator(device).manual_seed(seed)
        if model == "DreamShaper":
            pipe = pipes["DreamShaper"]
            # pipe = move_pipe("DreamShaper Vision V1.4")
        # elif model == "Realistic Vision V1.4":
        #     pipe = move_pipe("Realistic Vision V1.4")
        # elif model == "OpenJourney":
        #     pipe = move_pipe("OpenJourney")
        # elif model == "Anything V3":
        #     pipe = move_pipe("Anything V3")

        
        qr = qrcode.QRCode(
            error_correction=qrcode.constants.ERROR_CORRECT_H,
            box_size=11,
            border=9,
        )
        qr.add_data(qrcode_data)
        qr.make(fit=True)
        qrcode_image = qr.make_image(
            fill_color="black",
            back_color="white"
        ).convert("RGB")
        qrcode_image = qrcode_image.resize((512, 512), PilImage.LANCZOS)

        image = pipe(
            prompt,
            [qrcode_image, qrcode_image],
            num_inference_steps=num_inference_steps,
            generator=generator,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            controlnet_conditioning_scale=[
                controlnet_conditioning_tile,
                controlnet_conditioning_brightness
            ]
        ).images[0]

        return image


    ui = gr.Interface(
        fn=predict,
        inputs=[
            Radio(
                value="DreamShaper",
                label="Model",
                choices=[
                    "DreamShaper",
                    # "Realistic Vision V1.4",
                    # "OpenJourney",
                    # "Anything V3"
                ],
            ),
            Textbox(
                value="https://twitter.com/JulienBlanchon",
                label="QR Code Data",
            ),
            Textbox(
                value="Japanese ramen with chopsticks, egg and steam, ultra detailed 8k",
                label="Prompt",
            ),
            Textbox(
                value="logo, watermark, signature, text, BadDream, UnrealisticDream",
                label="Negative Prompt",
                optional=True
            ),
            Slider(
                value=100,
                label="Number of Inference Steps",
                minimum=10,
                maximum=400,
                step=1,
            ),
            Slider(
                value=9,
                label="Guidance Scale",
                minimum=1,
                maximum=20,
                step=1,
            ),
            Slider(
                value=0.25,
                label="Controlnet Conditioning Tile",
                minimum=0.0,
                maximum=1.0,
                step=0.05,

            ),
            Slider(
                value=0.45,
                label="Controlnet Conditioning Brightness",
                minimum=0.0,
                maximum=1.0,
                step=0.05,
            ),
            Number(
                value=1,
                label="Seed",
                precision=0,
            ),

        ],
        outputs=Image(
            label="Generated Image",
            type="pil",
        ),
        examples=[
            [
                "DreamShaper",
                "https://twitter.com/JulienBlanchon",
                "Japanese ramen with chopsticks, egg and steam, ultra detailed 8k",
                "logo, watermark, signature, text, BadDream, UnrealisticDream",
                100,
                9,
                0.25,
                0.45,
                1,
            ],
            # [
            #     "Anything V3",
            #     "https://twitter.com/JulienBlanchon",
            #     "Japanese ramen with chopsticks, egg and steam, ultra detailed 8k",
            #     "logo, watermark, signature, text, BadDream, UnrealisticDream",
            #     100,
            #     9,
            #     0.25,
            #     0.60,
            #     1,
            # ],
            [
                "DreamShaper",
                "https://twitter.com/JulienBlanchon",
                "processor, chipset, electricity, black and white board",
                "logo, watermark, signature, text, BadDream, UnrealisticDream",
                300,
                9,
                0.50,
                0.30,
                1,
            ],
        ],
        cache_examples=True,
        title="Stable Diffusion QR Code Controlnet",
        description="Generate QR Code with Stable Diffusion and Controlnet",
        allow_flagging="never",
        max_batch_size=1,
    )

    ui.queue(concurrency_count=10).launch()

if __name__ == "__main__":
    main()