File size: 7,091 Bytes
2de1f98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import cv2
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib as mpl
import os
os.environ["PYOPENGL_PLATFORM"] = "egl"
import pyrender
import trimesh
from config import cfg

def vis_keypoints_with_skeleton(img, kps, kps_lines, kp_thresh=0.4, alpha=1):
    # Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
    cmap = plt.get_cmap('rainbow')
    colors = [cmap(i) for i in np.linspace(0, 1, len(kps_lines) + 2)]
    colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]

    # Perform the drawing on a copy of the image, to allow for blending.
    kp_mask = np.copy(img)

    # Draw the keypoints.
    for l in range(len(kps_lines)):
        i1 = kps_lines[l][0]
        i2 = kps_lines[l][1]
        p1 = kps[0, i1].astype(np.int32), kps[1, i1].astype(np.int32)
        p2 = kps[0, i2].astype(np.int32), kps[1, i2].astype(np.int32)
        if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
            cv2.line(
                kp_mask, p1, p2,
                color=colors[l], thickness=2, lineType=cv2.LINE_AA)
        if kps[2, i1] > kp_thresh:
            cv2.circle(
                kp_mask, p1,
                radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
        if kps[2, i2] > kp_thresh:
            cv2.circle(
                kp_mask, p2,
                radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)

    # Blend the keypoints.
    return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)

def vis_keypoints(img, kps, alpha=1, radius=3, color=None):
    # Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
    cmap = plt.get_cmap('rainbow')
    if color is None:
        colors = [cmap(i) for i in np.linspace(0, 1, len(kps) + 2)]
        colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]

    # Perform the drawing on a copy of the image, to allow for blending.
    kp_mask = np.copy(img)

    # Draw the keypoints.
    for i in range(len(kps)):
        p = kps[i][0].astype(np.int32), kps[i][1].astype(np.int32)
        if color is None:
            cv2.circle(kp_mask, p, radius=radius, color=colors[i], thickness=-1, lineType=cv2.LINE_AA)
        else:
            cv2.circle(kp_mask, p, radius=radius, color=color, thickness=-1, lineType=cv2.LINE_AA)

    # Blend the keypoints.
    return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)

def vis_mesh(img, mesh_vertex, alpha=0.5):
    # Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
    cmap = plt.get_cmap('rainbow')
    colors = [cmap(i) for i in np.linspace(0, 1, len(mesh_vertex))]
    colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]

    # Perform the drawing on a copy of the image, to allow for blending.
    mask = np.copy(img)

    # Draw the mesh
    for i in range(len(mesh_vertex)):
        p = mesh_vertex[i][0].astype(np.int32), mesh_vertex[i][1].astype(np.int32)
        cv2.circle(mask, p, radius=1, color=colors[i], thickness=-1, lineType=cv2.LINE_AA)

    # Blend the keypoints.
    return cv2.addWeighted(img, 1.0 - alpha, mask, alpha, 0)

def vis_3d_skeleton(kpt_3d, kpt_3d_vis, kps_lines, filename=None):

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
    cmap = plt.get_cmap('rainbow')
    colors = [cmap(i) for i in np.linspace(0, 1, len(kps_lines) + 2)]
    colors = [np.array((c[2], c[1], c[0])) for c in colors]

    for l in range(len(kps_lines)):
        i1 = kps_lines[l][0]
        i2 = kps_lines[l][1]
        x = np.array([kpt_3d[i1,0], kpt_3d[i2,0]])
        y = np.array([kpt_3d[i1,1], kpt_3d[i2,1]])
        z = np.array([kpt_3d[i1,2], kpt_3d[i2,2]])

        if kpt_3d_vis[i1,0] > 0 and kpt_3d_vis[i2,0] > 0:
            ax.plot(x, z, -y, c=colors[l], linewidth=2)
        if kpt_3d_vis[i1,0] > 0:
            ax.scatter(kpt_3d[i1,0], kpt_3d[i1,2], -kpt_3d[i1,1], c=colors[l], marker='o')
        if kpt_3d_vis[i2,0] > 0:
            ax.scatter(kpt_3d[i2,0], kpt_3d[i2,2], -kpt_3d[i2,1], c=colors[l], marker='o')

    x_r = np.array([0, cfg.input_shape[1]], dtype=np.float32)
    y_r = np.array([0, cfg.input_shape[0]], dtype=np.float32)
    z_r = np.array([0, 1], dtype=np.float32)
    
    if filename is None:
        ax.set_title('3D vis')
    else:
        ax.set_title(filename)

    ax.set_xlabel('X Label')
    ax.set_ylabel('Z Label')
    ax.set_zlabel('Y Label')
    ax.legend()

    plt.show()
    cv2.waitKey(0)

def save_obj(v, f, file_name='output.obj'):
    obj_file = open(file_name, 'w')
    for i in range(len(v)):
        obj_file.write('v ' + str(v[i][0]) + ' ' + str(v[i][1]) + ' ' + str(v[i][2]) + '\n')
    for i in range(len(f)):
        obj_file.write('f ' + str(f[i][0]+1) + '/' + str(f[i][0]+1) + ' ' + str(f[i][1]+1) + '/' + str(f[i][1]+1) + ' ' + str(f[i][2]+1) + '/' + str(f[i][2]+1) + '\n')
    obj_file.close()


def perspective_projection(vertices, cam_param):
    # vertices: [N, 3]
    # cam_param: [3]
    fx, fy= cam_param['focal']
    cx, cy = cam_param['princpt']
    vertices[:, 0] = vertices[:, 0] * fx / vertices[:, 2] + cx
    vertices[:, 1] = vertices[:, 1] * fy / vertices[:, 2] + cy
    return vertices


def render_mesh(img, mesh, face, cam_param, mesh_as_vertices=False):
    if mesh_as_vertices:
        # to run on cluster where headless pyrender is not supported for A100/V100
        vertices_2d = perspective_projection(mesh, cam_param)
        img = vis_keypoints(img, vertices_2d, alpha=0.8, radius=2, color=(0, 0, 255))
    else:
        # mesh
        mesh = trimesh.Trimesh(mesh, face)
        rot = trimesh.transformations.rotation_matrix(
        np.radians(180), [1, 0, 0])
        mesh.apply_transform(rot)
        material = pyrender.MetallicRoughnessMaterial(metallicFactor=0.0, alphaMode='OPAQUE', baseColorFactor=(1.0, 1.0, 0.9, 1.0))
        mesh = pyrender.Mesh.from_trimesh(mesh, material=material, smooth=False)
        scene = pyrender.Scene(ambient_light=(0.3, 0.3, 0.3))
        scene.add(mesh, 'mesh')

        focal, princpt = cam_param['focal'], cam_param['princpt']
        camera = pyrender.IntrinsicsCamera(fx=focal[0], fy=focal[1], cx=princpt[0], cy=princpt[1])
        scene.add(camera)

        # renderer
        renderer = pyrender.OffscreenRenderer(viewport_width=img.shape[1], viewport_height=img.shape[0], point_size=1.0)

        # light
        light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=0.8)
        light_pose = np.eye(4)
        light_pose[:3, 3] = np.array([0, -1, 1])
        scene.add(light, pose=light_pose)
        light_pose[:3, 3] = np.array([0, 1, 1])
        scene.add(light, pose=light_pose)
        light_pose[:3, 3] = np.array([1, 1, 2])
        scene.add(light, pose=light_pose)

        # render
        rgb, depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
        rgb = rgb[:,:,:3].astype(np.float32)
        valid_mask = (depth > 0)[:,:,None]

        # save to image
        img = rgb * valid_mask + img * (1-valid_mask)

    return img