SMPLer-X / common /utils /inference_utils.py
onescotch
add huggingface implementation
2de1f98
raw
history blame
5.25 kB
from typing import Literal, Union
def process_mmdet_results(mmdet_results: list,
cat_id: int = 0,
multi_person: bool = True) -> list:
"""Process mmdet results, sort bboxes by area in descending order.
Args:
mmdet_results (list):
Result of mmdet.apis.inference_detector
when the input is a batch.
Shape of the nested lists is
(n_frame, n_category, n_human, 5).
cat_id (int, optional):
Category ID. This function will only select
the selected category, and drop the others.
Defaults to 0, ID of human category.
multi_person (bool, optional):
Whether to allow multi-person detection, which is
slower than single-person. If false, the function
only assure that the first person of each frame
has the biggest bbox.
Defaults to True.
Returns:
list:
A list of detected bounding boxes.
Shape of the nested lists is
(n_frame, n_human, 5)
and each bbox is (x, y, x, y, score).
"""
ret_list = []
only_max_arg = not multi_person
# for _, frame_results in enumerate(mmdet_results):
cat_bboxes = mmdet_results[cat_id]
# import pdb; pdb.set_trace()
sorted_bbox = qsort_bbox_list(cat_bboxes, only_max_arg)
if only_max_arg:
ret_list.append(sorted_bbox[0:1])
else:
ret_list.append(sorted_bbox)
return ret_list
def qsort_bbox_list(bbox_list: list,
only_max: bool = False,
bbox_convention: Literal['xyxy', 'xywh'] = 'xyxy'):
"""Sort a list of bboxes, by their area in pixel(W*H).
Args:
input_list (list):
A list of bboxes. Each item is a list of (x1, y1, x2, y2)
only_max (bool, optional):
If True, only assure the max element at first place,
others may not be well sorted.
If False, return a well sorted descending list.
Defaults to False.
bbox_convention (str, optional):
Bbox type, xyxy or xywh. Defaults to 'xyxy'.
Returns:
list:
A sorted(maybe not so well) descending list.
"""
# import pdb; pdb.set_trace()
if len(bbox_list) <= 1:
return bbox_list
else:
bigger_list = []
less_list = []
anchor_index = int(len(bbox_list) / 2)
anchor_bbox = bbox_list[anchor_index]
anchor_area = get_area_of_bbox(anchor_bbox, bbox_convention)
for i in range(len(bbox_list)):
if i == anchor_index:
continue
tmp_bbox = bbox_list[i]
tmp_area = get_area_of_bbox(tmp_bbox, bbox_convention)
if tmp_area >= anchor_area:
bigger_list.append(tmp_bbox)
else:
less_list.append(tmp_bbox)
if only_max:
return qsort_bbox_list(bigger_list) + \
[anchor_bbox, ] + less_list
else:
return qsort_bbox_list(bigger_list) + \
[anchor_bbox, ] + qsort_bbox_list(less_list)
def get_area_of_bbox(
bbox: Union[list, tuple],
bbox_convention: Literal['xyxy', 'xywh'] = 'xyxy') -> float:
"""Get the area of a bbox_xyxy.
Args:
(Union[list, tuple]):
A list of [x1, y1, x2, y2].
bbox_convention (str, optional):
Bbox type, xyxy or xywh. Defaults to 'xyxy'.
Returns:
float:
Area of the bbox(|y2-y1|*|x2-x1|).
"""
# import pdb;pdb.set_trace()
if bbox_convention == 'xyxy':
return abs(bbox[2] - bbox[0]) * abs(bbox[3] - bbox[1])
elif bbox_convention == 'xywh':
return abs(bbox[2] * bbox[3])
else:
raise TypeError(f'Wrong bbox convention: {bbox_convention}')
def calculate_iou(bbox1, bbox2):
# Calculate the Intersection over Union (IoU) between two bounding boxes
x1 = max(bbox1[0], bbox2[0])
y1 = max(bbox1[1], bbox2[1])
x2 = min(bbox1[2], bbox2[2])
y2 = min(bbox1[3], bbox2[3])
intersection_area = max(0, x2 - x1 + 1) * max(0, y2 - y1 + 1)
bbox1_area = (bbox1[2] - bbox1[0] + 1) * (bbox1[3] - bbox1[1] + 1)
bbox2_area = (bbox2[2] - bbox2[0] + 1) * (bbox2[3] - bbox2[1] + 1)
union_area = bbox1_area + bbox2_area - intersection_area
iou = intersection_area / union_area
return iou
def non_max_suppression(bboxes, iou_threshold):
# Sort the bounding boxes by their confidence scores (e.g., the probability of containing an object)
bboxes = sorted(bboxes, key=lambda x: x[4], reverse=True)
# Initialize a list to store the selected bounding boxes
selected_bboxes = []
# Perform non-maximum suppression
while len(bboxes) > 0:
current_bbox = bboxes[0]
selected_bboxes.append(current_bbox)
bboxes = bboxes[1:]
remaining_bboxes = []
for bbox in bboxes:
iou = calculate_iou(current_bbox, bbox)
if iou < iou_threshold:
remaining_bboxes.append(bbox)
bboxes = remaining_bboxes
return selected_bboxes