File size: 5,273 Bytes
bfa3aba 47342ef bfa3aba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import torch
from tqdm import tqdm
import cv2
import os
import numpy as np
import pandas as pd
from datetime import datetime
from typing import Tuple
from PIL import Image
from utils import plot_predictions, mp4_to_png, vid_stitcher
from transformers import Owlv2Processor, Owlv2ForObjectDetection
def preprocess_text(text_prompt: str, num_prompts: int = 1):
"""
Takes a string of text prompts and returns a list of lists of text prompts for each image.
i.e. text_prompt = "a, b, c" -> [["a", "b", "c"], ["a", "b", "c"]]
"""
text_prompt = [s.strip() for s in text_prompt.split(",")]
text_queries = [text_prompt] * num_prompts
# print("text_queries:", text_queries)
return text_queries
def owl_batch_prediction(
images: torch.Tensor,
text_queries : list[str], # assuming that every image is queried with the same text prompt
threshold: float,
processor,
model,
device: str = 'cuda'
):
inputs = processor(text=text_queries, images=images, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model(**inputs)
# Target image sizes (height, width) to rescale box predictions [batch_size, 2]
target_sizes = torch.Tensor([img.size[::-1] for img in images]).to(device)
# Convert outputs (bounding boxes and class logits) to COCO API, resizes to original image size and filter by threshold
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes, threshold=threshold)
return results
def owl_full_video(
vid_path: str,
text_prompt: str,
threshold: float,
fps_processed: int = 1,
scaling_factor: float = 0.5,
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble").to('cuda'),
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to('cuda'),
device: str = 'cuda',
batch_size: int = 6,
):
""" Same as owl_video, but processes the entire video regardless of detection bool.
Saves results per frame to a df.
"""
# create new dirs and paths for results
filename = os.path.splitext(os.path.basename(vid_path))[0]
results_dir = f'../results/{filename}_{datetime.now().strftime("%H%M%S")}'
frames_dir = os.path.join(results_dir, "frames")
# if the frames directory does not exist, create it and get the frames from the video
if not os.path.exists(results_dir):
os.makedirs(results_dir, exist_ok=True)
os.makedirs(frames_dir, exist_ok=True)
# process video and create a directory of video frames
fps = mp4_to_png(vid_path, frames_dir, scaling_factor)
# get all frame paths
frame_filenames = os.listdir(frames_dir)
frame_paths = [] # list of frame paths to process based on fps_processed
# for every frame processed, add to frame_paths
for i, frame in enumerate(frame_filenames):
if i % fps_processed == 0:
frame_paths.append(os.path.join(frames_dir, frame))
# set up df for results
df = pd.DataFrame(columns=["frame", "boxes", "scores", "labels"])
# for positive detection frames whether the directory has been created
dir_created = False
# run owl in batches
for i in tqdm(range(0, len(frame_paths), batch_size), desc="Running batches"):
frame_nums = [i*fps_processed for i in range(batch_size)]
batch_paths = frame_paths[i:i+batch_size] # paths for this batch
images = [Image.open(image_path) for image_path in batch_paths]
# run owl on this batch of frames
text_queries = preprocess_text(text_prompt, len(batch_paths))
results = owl_batch_prediction(images, text_queries, threshold, processor, model, device)
# get the labels
label_ids = []
for entry in results:
if entry['labels'].numel() > 0:
label_ids.append(entry['labels'].tolist())
else:
label_ids.append(None)
text = text_queries[0] # assuming that all texts in query are the same
labels = []
# convert label_ids to phrases, if no phrases, append None
for idx in label_ids:
if idx is not None:
idx = [text[id] for id in idx]
labels.append(idx)
else:
labels.append(None)
for j, image in enumerate(batch_paths):
boxes = results[j]['boxes'].cpu().numpy()
scores = results[j]['scores'].cpu().numpy()
row = pd.DataFrame({"frame": [image], "boxes": [boxes], "scores": [scores], "labels": [labels[j]]})
df = pd.concat([df, row], ignore_index=True)
# if there are detections, save the frame replacing the original frame
annotated_frame = plot_predictions(image, labels[j], scores, boxes)
cv2.imwrite(image, annotated_frame)
# save the df to a csv
csv_path = f"{results_dir}/{filename}_{threshold}.csv"
df.to_csv(csv_path, index=False)
# stitch the frames into a video
save_path = vid_stitcher(frames_dir, output_path=os.path.join(results_dir, "output.mp4"))
return csv_path, save_path |