|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import asyncio |
|
import os |
|
import re |
|
import time |
|
import json |
|
|
|
import chainlit as cl |
|
from dotenv import load_dotenv |
|
|
|
from langchain_community.tools.requests.tool import RequestsPostTool |
|
from langchain_community.utilities.requests import TextRequestsWrapper |
|
from langchain_community.utilities.requests import JsonRequestsWrapper |
|
|
|
from langchain import hub |
|
from langchain_openai import OpenAI |
|
from tiktoken import encoding_for_model |
|
from langchain.chains import LLMChain, APIChain |
|
from langchain_core.prompts import PromptTemplate |
|
from langchain.memory.buffer import ConversationBufferMemory |
|
|
|
|
|
|
|
from api_docs import api_docs_str |
|
|
|
load_dotenv() |
|
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") |
|
|
|
auth_token = os.environ.get("CHAINLIT_AUTH_SECRET") |
|
if not auth_token.startswith("Bearer "): |
|
auth_token = f"Bearer {auth_token}" |
|
|
|
|
|
|
|
daysoff_assistant_template = """ |
|
#You are a customer support assistant (’kundeservice AI assistent’) for Daysoff. |
|
#By default, you respond in Norwegian language, using a warm, direct, and professional tone. |
|
Your expertise is exclusively in retrieving booking information for a given booking ID assistance related to |
|
to this. |
|
You do not provide information outside of this scope. If a question is not about this topic, respond with |
|
"Jeg driver faktisk kun med henvendelser omkring bestillingsinformasjon. Gjelder det andre henvendelser |
|
må du nok kontakte kundeservice på kundeservice@daysoff.no😊" |
|
Chat History: {chat_history} |
|
Question: {question} |
|
Answer: |
|
""" |
|
daysoff_assistant_prompt = PromptTemplate( |
|
input_variables=['chat_history', 'question'], |
|
template=daysoff_assistant_template |
|
) |
|
|
|
api_url_template = """ |
|
Given the following API Documentation for Daysoff's official |
|
booking information API: {api_docs} |
|
Your task is to construct the most efficient API URL to answer |
|
the user's question, ensuring the |
|
call is optimized to include only the necessary information. |
|
Question: {question} |
|
API URL: |
|
""" |
|
api_url_prompt = PromptTemplate(input_variables=['api_docs', 'question'], |
|
template=api_url_template) |
|
|
|
api_response_template = """ |
|
With the API Documentation for Daysoff's official API: {api_docs} in mind, |
|
and the specific user question: {question}, |
|
and given this API URL: {api_url} for querying, |
|
and response from Daysoff's API: {api_response}, |
|
never refer the user to the API URL as your answer! |
|
You should always provide a clear and concise summary (in Norwegian) of the booking information retrieved. |
|
This way you directly address the user's question in a manner that reflects the professionalism and warmth |
|
of a human customer service agent. |
|
Summary: |
|
""" |
|
api_response_prompt = PromptTemplate( |
|
input_variables=['api_docs', 'question', 'api_url', 'api_response'], |
|
template=api_response_template |
|
) |
|
|
|
@cl.on_chat_start |
|
def setup_multiple_chains(): |
|
llm = OpenAI( |
|
model='gpt-3.5-turbo-instruct', |
|
temperature=0.7, |
|
openai_api_key=OPENAI_API_KEY, |
|
max_tokens=2048, |
|
top_p=0.9, |
|
frequency_penalty=0.1, |
|
presence_penalty=0.1 |
|
) |
|
|
|
conversation_memory = ConversationBufferMemory(memory_key="chat_history", |
|
max_len=30, |
|
return_messages=True, |
|
) |
|
|
|
llm_chain = LLMChain( |
|
llm=llm, |
|
prompt=daysoff_assistant_prompt, |
|
memory=conversation_memory |
|
) |
|
|
|
cl.user_session.set("llm_chain", llm_chain) |
|
|
|
api_chain = APIChain.from_llm_and_api_docs( |
|
llm=llm, |
|
api_docs=api_docs_str, |
|
api_url_prompt=api_url_prompt, |
|
api_response_prompt=api_response_prompt, |
|
verbose=True, |
|
limit_to_domains=None |
|
) |
|
|
|
cl.user_session.set("api_chain", api_chain) |
|
|
|
|
|
requests_wrapper = TextRequestsWrapper( |
|
headers={ |
|
"Authorization": auth_token, |
|
"Content-Type": "application/json" |
|
} |
|
) |
|
|
|
post_tool = RequestsPostTool( |
|
requests_wrapper=requests_wrapper, |
|
allow_dangerous_requests=True |
|
) |
|
|
|
cl.user_session.set("post_tool", post_tool) |
|
|
|
|
|
@cl.on_message |
|
async def handle_message(message: cl.Message): |
|
user_message = message.content |
|
llm_chain = cl.user_session.get("llm_chain") |
|
api_chain = cl.user_session.get("api_chain") |
|
post_tool = cl.user_session.get("post_tool") |
|
|
|
api_url = "https://aivisions.no/data/daysoff/api/v1/booking/" |
|
booking_pattern = r'\b[A-Z]{6}\d{6}\b' |
|
match = re.search(booking_pattern, user_message) |
|
|
|
|
|
if match: |
|
bestillingskode = match.group() |
|
post_data = { |
|
"url": api_url, |
|
"body": { |
|
"booking_id": bestillingskode |
|
} |
|
} |
|
|
|
response = await post_tool.ainvoke( |
|
json.dumps(post_data), |
|
config={"callbacks": [cl.AsyncLangchainCallbackHandler()]} |
|
) |
|
|
|
else: |
|
response = await llm_chain.ainvoke(user_message, callbacks=[cl.AsyncLangchainCallbackHandler()]) |
|
|
|
|
|
response_key = "output" if "output" in response else "text" |
|
await cl.Message(response.get(response_key, "")).send() |
|
return message.content |
|
|
|
|
|
|