Spaces:
Sleeping
Sleeping
Upload yolo_text_extraction.py with huggingface_hub
Browse files- yolo_text_extraction.py +171 -0
yolo_text_extraction.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
from PIL import Image,ImageDraw
|
3 |
+
import numpy as np
|
4 |
+
from PIL import ImageFilter
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from ocr_functions import paddle_ocr,textract_ocr,tesseract_ocr
|
9 |
+
from pdf2image import convert_from_bytes
|
10 |
+
from multiprocessing import Pool
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
model =YOLO("yolo_model/model_3_openvino_model")
|
15 |
+
labels = ['Achievement', 'Certifications', 'Community', 'Contact', 'Education', 'Experience', 'Interests', 'Languages', 'Name', 'Profil', 'Projects', 'image', 'resume', 'skills']
|
16 |
+
|
17 |
+
|
18 |
+
def check_intersection(bbox1, bbox2):
|
19 |
+
# Check for intersection between two bounding boxes
|
20 |
+
x1, y1, x2, y2 = bbox1
|
21 |
+
x3, y3, x4, y4 = bbox2
|
22 |
+
return not (x3 > x2 or x4 < x1 or y3 > y2 or y4 < y1)
|
23 |
+
|
24 |
+
def check_inclusion(bbox1, bbox2):
|
25 |
+
# Check if one bounding box is completely inside another
|
26 |
+
x1, y1, x2, y2 = bbox1
|
27 |
+
x3, y3, x4, y4 = bbox2
|
28 |
+
return x1 >= x3 and y1 >= y3 and x2 <= x4 and y2 <= y4
|
29 |
+
|
30 |
+
def union_bbox(bbox1, bbox2):
|
31 |
+
# Calculate the union of two bounding boxes
|
32 |
+
x1 = min(bbox1[0], bbox2[0])
|
33 |
+
y1 = min(bbox1[1], bbox2[1])
|
34 |
+
x2 = max(bbox1[2], bbox2[2])
|
35 |
+
y2 = max(bbox1[3], bbox2[3])
|
36 |
+
return [x1, y1, x2, y2]
|
37 |
+
|
38 |
+
def filter_bboxes(bboxes):
|
39 |
+
# Iterate through each pair of bounding boxes and filter out those that intersect or are completely contained within another
|
40 |
+
filtered_bboxes = []
|
41 |
+
for bbox1 in bboxes:
|
42 |
+
is_valid = True
|
43 |
+
for bbox2 in filtered_bboxes:
|
44 |
+
if check_intersection(bbox1, bbox2):
|
45 |
+
# If the two bounding boxes intersect, compute their union
|
46 |
+
bbox1 = union_bbox(bbox1, bbox2)
|
47 |
+
# Mark the current bbox as invalid to be removed
|
48 |
+
is_valid = False
|
49 |
+
break
|
50 |
+
elif check_inclusion(bbox1, bbox2):
|
51 |
+
# If bbox1 is completely contained within bbox2, mark bbox1 as invalid to be removed
|
52 |
+
is_valid = False
|
53 |
+
break
|
54 |
+
if is_valid:
|
55 |
+
filtered_bboxes.append(bbox1)
|
56 |
+
return filtered_bboxes
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
def draw_bboxes(image, bboxes ):
|
62 |
+
draw = ImageDraw.Draw(image)
|
63 |
+
for bbox in bboxes:
|
64 |
+
x1, y1, x2, y2 = bbox
|
65 |
+
|
66 |
+
x1,y1,x2,y2 = int(x1),int(y1),int(x2),int(y2)
|
67 |
+
draw.rectangle([(x1, y1), (x2, y2)], outline=(255, 0, 0), width=2)
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def extract_image(image,box):
|
72 |
+
x1, y1, x2, y2 = box
|
73 |
+
cropped_image = image.crop((x1, y1, x2, y2))
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
def process_bbox(args):
|
79 |
+
image, bbox = args
|
80 |
+
return textract_ocr(image, bbox)
|
81 |
+
|
82 |
+
def convert_bboxes_to_original(bboxes, original_size, resized_size):
|
83 |
+
"""
|
84 |
+
Convert bounding boxes from resized image size to original image size using NumPy.
|
85 |
+
|
86 |
+
:param bboxes: NumPy array of bounding boxes in format [x1, y1, x2, y2] for resized image
|
87 |
+
:param original_size: Tuple (original_width, original_height)
|
88 |
+
:param resized_size: Tuple (resized_width, resized_height)
|
89 |
+
:return: NumPy array of bounding boxes in format [x1, y1, x2, y2] for original image
|
90 |
+
"""
|
91 |
+
original_width, original_height = original_size
|
92 |
+
resized_width, resized_height = resized_size
|
93 |
+
|
94 |
+
# Calculate scaling factors
|
95 |
+
x_scale = original_width / resized_width
|
96 |
+
y_scale = original_height / resized_height
|
97 |
+
|
98 |
+
# Convert bounding boxes using broadcasting
|
99 |
+
bboxes_np = np.array(bboxes)
|
100 |
+
bboxes_np[:, 0] *= x_scale # Scale x1
|
101 |
+
bboxes_np[:, 1] *= y_scale # Scale y1
|
102 |
+
bboxes_np[:, 2] *= x_scale # Scale x2
|
103 |
+
bboxes_np[:, 3] *= y_scale # Scale y2
|
104 |
+
|
105 |
+
return bboxes_np
|
106 |
+
|
107 |
+
|
108 |
+
def correct_to_by_classifier(text):
|
109 |
+
pass
|
110 |
+
|
111 |
+
def extract_text_from_sections(image):
|
112 |
+
cv_parse = {}
|
113 |
+
original_size = image.size
|
114 |
+
original_img = image
|
115 |
+
image = image.resize((640, 640))
|
116 |
+
image = image.convert("RGB")
|
117 |
+
image_np = np.array(image)
|
118 |
+
|
119 |
+
# Perform model prediction
|
120 |
+
result = model(source=image_np, conf=0.20)
|
121 |
+
names = result[0].names # Class names
|
122 |
+
data = result[0].boxes.data.numpy()
|
123 |
+
|
124 |
+
# Extract bounding boxes and their corresponding class labels
|
125 |
+
bboxes = data[:, 0:4].tolist()
|
126 |
+
|
127 |
+
|
128 |
+
class_ids = data[:, 5].astype(int).tolist()
|
129 |
+
|
130 |
+
bboxes_filter = filter_bboxes(bboxes)
|
131 |
+
original_bboxes = convert_bboxes_to_original(bboxes_filter, original_size, (640,640))
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
for bbox, class_id in zip(original_bboxes, class_ids):
|
137 |
+
class_name = names[class_id]
|
138 |
+
if class_name !="image":
|
139 |
+
text = textract_ocr(original_img, bbox)
|
140 |
+
if class_name in cv_parse:
|
141 |
+
cv_parse[class_name] += "\n" + text
|
142 |
+
else:
|
143 |
+
cv_parse[class_name] = text
|
144 |
+
|
145 |
+
return cv_parse
|
146 |
+
|
147 |
+
def merge_dicts_append_strings(dict1, dict2):
|
148 |
+
# Create a new dictionary to hold the merged results
|
149 |
+
merged_dict = {}
|
150 |
+
|
151 |
+
# Add all key-value pairs from dict1 to merged_dict
|
152 |
+
for key, value in dict1.items():
|
153 |
+
merged_dict[key] = value
|
154 |
+
|
155 |
+
# Append values from dict2 to merged_dict
|
156 |
+
for key, value in dict2.items():
|
157 |
+
if key in merged_dict:
|
158 |
+
merged_dict[key] += "\n" + value
|
159 |
+
else:
|
160 |
+
merged_dict[key] = value
|
161 |
+
|
162 |
+
return merged_dict
|
163 |
+
|
164 |
+
|
165 |
+
def cv_to_json(file):
|
166 |
+
cv_parsing = {}
|
167 |
+
images = convert_from_bytes(file.read())
|
168 |
+
for image in images :
|
169 |
+
cv_parsing = merge_dicts_append_strings(cv_parsing,extract_text_from_sections(image))
|
170 |
+
return cv_parsing
|
171 |
+
|