File size: 5,434 Bytes
4c8c217 52b8278 74d32cc 0ff2378 7d9fec0 0ff2378 7d9fec0 98f8b95 49b8bd6 b594097 c3d6f40 9c60047 7d9fec0 1dd3a02 7d9fec0 1dd3a02 b594097 986e2b7 7d9fec0 986e2b7 0ff2378 7d9fec0 0ff2378 c790556 7d9fec0 c790556 0ff2378 1dd3a02 c790556 0ff2378 c790556 0ff2378 8a6e9d6 a9a1953 49b8bd6 4f92556 49b8bd6 2f9704c c790556 0ff2378 885ec28 b1d9a7f 885ec28 0ff2378 4c8c217 1dd3a02 b0d0303 4c8c217 81a4020 6b80b65 81a4020 1572555 52b8278 0ff2378 c306f1c 986e2b7 52b8278 81a4020 8c67f60 52b8278 6ad6f7e 6b80b65 4c8c217 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import streamlit as st
from langchain_core.messages import AIMessage, HumanMessage
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
# from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.llms import CTransformers
from ctransformers import AutoModelForCausalLM
from langchain.llms import HuggingFaceHub
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import transformers
import torch
# from dotenv import load_dotenv
# load_dotenv()
def get_vector_store_from_url(url):
model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
loader = WebBaseLoader(url)
document = loader.load()
# split the document into chunks
text_splitter = RecursiveCharacterTextSplitter()
document_chunks = text_splitter.split_documents(document)
# create a vectorstore from the chunks
# vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings())
vector_store = Chroma.from_documents(document_chunks, embeddings)
return vector_store
def get_context_retriever_chain(vector_store,llm):
# llm = ChatOpenAI()
llm = llm
retriever = vector_store.as_retriever()
prompt = ChatPromptTemplate.from_messages([
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation")
])
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
return retriever_chain
def get_conversational_rag_chain(retriever_chain,llm):
llm=llm
prompt = ChatPromptTemplate.from_messages([
("system", "Answer the user's questions based on the below context:\n\n{context}"),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
])
stuff_documents_chain = create_stuff_documents_chain(llm,prompt)
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
def get_response(user_input):
# llm = CTransformers(
# # model = "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
# model= "TheBloke/Llama-2-7B-Chat-GGUF",
# model_file = "llama-2-7b-chat.Q3_K_S.gguf",
# model_type="llama",
# max_new_tokens = 300,
# temperature = 0.3,
# lib="avx2", # for CPU
# )
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
# llm = HuggingFaceHub(
# repo_id=llm_model,
# model_kwargs={"temperature": 0.3, "max_new_tokens": 250, "top_k": 3}
# )
llm = transformers.AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map='auto'
)
retriever_chain = get_context_retriever_chain(st.session_state.vector_store,llm)
conversation_rag_chain = get_conversational_rag_chain(retriever_chain,llm)
response = conversation_rag_chain.invoke({
"chat_history": st.session_state.chat_history,
"input": user_query
})
return response['answer']
# app config
st.set_page_config(page_title= "Chat with Websites", page_icon="🤖")
st.title("Chat with Websites")
#sidebar
with st.sidebar:
st.header("Settings")
website_url = st.text_input("Website URL")
# openai_apikey = st.text_input("Enter your OpenAI API key")
if (website_url is None or website_url == ""):
st.info("Please ensure if website URL is entered")
else:
if "chat_history" not in st.session_state:
st.session_state.chat_history = [
AIMessage(content = "Hello, I am a bot. How can I help you"),
]
if "vector_store" not in st.session_state:
st.session_state.vector_store = get_vector_store_from_url(website_url)
#user_input
user_query = st.chat_input("Type your message here...")
if user_query is not None and user_query !="":
response = get_response(user_query)
st.session_state.chat_history.append(HumanMessage(content=user_query))
st.session_state.chat_history.append(AIMessage(content=response))
#conversation
for message in st.session_state.chat_history:
if isinstance(message, AIMessage): # checking if the messsage is the instance of an AI message
with st.chat_message("AI"):
st.write(message.content)
elif isinstance(message, HumanMessage): # checking if the messsage is the instance of a Human
with st.chat_message("Human"):
st.write(message.content)
|