Spaces:
Build error
Build error
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from math import ceil | |
from collections import Counter | |
from string import punctuation | |
import spacy | |
from spacy import displacy | |
import en_ner_bc5cdr_md | |
# Store the initial value of widgets in session state | |
if "visibility" not in st.session_state: | |
st.session_state.visibility = "visible" | |
st.session_state.disabled = False | |
#nlp = en_core_web_lg.load() | |
nlp = spacy.load("en_ner_bc5cdr_md") | |
st.set_page_config(layout='wide') | |
st.title('Clinical Note Summarization') | |
st.sidebar.markdown('Using transformer model') | |
## Loading in dataset | |
#df = pd.read_csv('mtsamples_small.csv',index_col=0) | |
df = pd.read_csv('shpi_w_rouge21Nov.csv') | |
#Renaming column | |
df.rename(columns={'SUBJECT_ID':'Patient_ID', | |
'HADM_ID':'Admission_ID', | |
'hpi_input_text':'Original_Text', | |
'hpi_reference_summary':'Reference_text'}, inplace = True) | |
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True) | |
#Filter selection | |
st.sidebar.header("Search for Patient:") | |
patientid = df['Patient_ID'] | |
patient = st.sidebar.selectbox('Select Patient ID:', patientid) | |
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] | |
HospitalAdmission = st.sidebar.selectbox('', admissionid) | |
# List of Model available | |
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer')) | |
col3,col4 = st.columns(2) | |
patientid = col3.write(f"Patient ID: {patient} ") | |
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ") | |
col1, col2 = st.columns(2) | |
#_min_length = col1.number_input("Minimum Length", value=_min_length) | |
#_max_length = col2.number_input("Maximun Length", value=_max_length) | |
##_early_stopping = col3.number_input("early_stopping", value=_early_stopping) | |
#text = st.text_area('Input Clinical Note here') | |
# Query out relevant Clinical notes | |
original_text = df.query( | |
"Patient_ID == @patient & Admission_ID == @HospitalAdmission" | |
) | |
original_text2 = original_text['Original_Text'].values | |
runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300) | |
reference_text = original_text['Reference_text'].values | |
def run_model(input_text): | |
if model == "BertSummarizer": | |
output = original_text['BertSummarizer'].values | |
st.write('Summary') | |
st.success(output[0]) | |
elif model == "BertGPT2": | |
output = original_text['BertGPT2'].values | |
st.write('Summary') | |
st.success(output[0]) | |
elif model == "t5seq2eq": | |
output = original_text['t5seq2eq'].values | |
st.write('Summary') | |
st.success(output) | |
elif model == "t5": | |
output = original_text['t5'].values | |
st.write('Summary') | |
st.success(output) | |
elif model == "gensim": | |
output = original_text['gensim'].values | |
st.write('Summary') | |
st.success(output) | |
elif model == "pysummarizer": | |
output = original_text['pysummarizer'].values | |
st.write('Summary') | |
st.success(output) | |
col1, col2 = st.columns([1,1]) | |
with col1: | |
st.button('Summarize') | |
run_model(runtext) | |
sentences=runtext.split('.') | |
st.text_area('Reference text', str(reference_text),label_visibility="hidden") | |
with col2: | |
st.button('NER') | |
doc = nlp(str(original_text2)) | |
colors = { "DISEASE": "pink","CHEMICAL": "orange"} | |
options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors} | |
ent_html = displacy.render(doc, style="ent", options=options) | |
st.markdown(ent_html, unsafe_allow_html=True) | |