Spaces:
Build error
Build error
import streamlit as st | |
import streamlit.components as components | |
from annotated_text import annotated_text, annotation | |
from htbuilder import h3 | |
import pandas as pd | |
import numpy as np | |
from math import ceil | |
from collections import Counter | |
from string import punctuation | |
import spacy | |
from negspacy.negation import Negex | |
from spacy import displacy | |
from spacy.lang.en import English | |
from spacy.matcher import PhraseMatcher | |
from spacy.tokens import Span | |
#import en_ner_bc5cdr_md | |
import re | |
from streamlit.components.v1 import html | |
import pickle | |
from functools import reduce | |
import operator | |
import itertools | |
from itertools import chain | |
from collections import Counter | |
from collections import OrderedDict | |
### ========== Loading Dataset ========== | |
## ======== Loading dataset ======== | |
## Loading in Admission Dataset | |
## df = Admission | |
## df2 = Admission Chief Complaint and Diagnosis | |
## df3 = Discharge History | |
## df4 = Daily Narrative | |
# #================================= | |
nlp = spacy.load("en_ner_bc5cdr_md") | |
df = pd.read_csv('shpi25nov.csv') | |
df.sort_values(by='SUBJECT_ID',ascending = True, inplace=True) | |
df2 = pd.read_csv('cohort_cc_adm_diag.csv') | |
df3 = pd.read_csv('cohort_past_history_12072022.csv') | |
df3.sort_values(by='CHARTDATE',ascending = False, inplace=True) | |
df4 = pd.read_csv('24houreventsFulltextwdifference.csv') | |
#df4.sort_values(by=['hadmid','DATETIME'],ascending = True, inplace=True) | |
# Loading in Daily Narrative - refreshed full 24 hr text | |
df5 = pd.read_csv('24hourevents10Jan.csv') | |
df5.sort_values(by=['hadmid','DATETIME'],ascending = True, inplace=True) | |
#Append the updated 24 hr text and changes column | |
df5.rename(columns={'hadmid':'HADM_ID', | |
'DATETIME':'STORETIME'}, inplace = True) | |
df4 = pd.merge(df4[['HADM_ID','DESCRIPTION','SUBJECT_ID','CHARTTIME','STORETIME','CGID','TEXT','checks','_24_Hour_Events','Full_24_Hour_Events']],df5[['HADM_ID','STORETIME','full_24 Hour Events:','24 Hour Events:']], on = ['HADM_ID','STORETIME'], how = 'left') | |
hr24event_pattern = re.compile('((24 Hour Events):\\n(?s).*?Allergies:)') | |
#there are some records with full_24 Hour Events: null, hence replaced these text with the extracted text from the progress note | |
df4['hr24event_extracted'] = '' | |
for (idx, row) in df4.iterrows(): | |
try: | |
text = df4['TEXT'][idx] | |
df4['hr24event_extracted'][idx] = re.findall(hr24event_pattern,text) | |
df4['hr24event_extracted'][idx] = [x for x in chain.from_iterable(df4['hr24event_extracted'][idx])] | |
except: | |
df4['hr24event_extracted'][idx] = '' | |
df4 = df4.reset_index(drop=True) | |
df4['hr24event_extracted'] = df4['hr24event_extracted'].apply(' '.join) | |
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\s+[a-z]+:\\n', ' ') | |
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('24 Hour Events:|24 Hour Events|Allergies:', '') | |
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\s+', ' ') | |
df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\.\s+\.', '.') | |
df4['hr24event_extracted'] = df4['hr24event_extracted'].replace(r"^ +| +$", r"", regex=True) | |
df4.loc[df4['full_24 Hour Events:'].isnull(),'full_24 Hour Events:'] = df4['hr24event_extracted'] | |
df4.loc[df4['24 Hour Events:'].isnull(),'24 Hour Events:'] = df4['_24_Hour_Events'] | |
# combining both data into one | |
df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID']) | |
# Deleting admission chief complaint and diagnosis after combining | |
del df2 | |
# Remove decimal point from Admission ID and format words | |
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) | |
df3['HADM_ID'] = df3['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) | |
df4['HADM_ID'] = df4['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) | |
df3['INDEX_HADM_ID'] = df3['INDEX_HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) | |
df3["CHARTDATE_HADM_ID"] = df3["CHARTDATE"].astype(str) +' ('+ df3["HADM_ID"] +')' | |
df3["DIAGNOSIS"] = df3["DIAGNOSIS"].str.capitalize() | |
df3["DISCHARGE_LOCATION"] = df3["DISCHARGE_LOCATION"].str.capitalize() | |
df3["TEXT"] =df3["TEXT"].replace(r'\n',' \n ', regex=True) | |
df3["TEXT"] =df3["TEXT"].replace(r'#',' ', regex=True) | |
df3["BertSummarizer"] =df3["BertSummarizer"].replace(r'#',' ', regex=True) | |
#Renaming column | |
df.rename(columns={'SUBJECT_ID':'Patient_ID', | |
'HADM_ID':'Admission_ID', | |
'hpi_input_text':'Original_Text', | |
'hpi_reference_summary':'Reference_text'}, inplace = True) | |
df3.rename(columns={'SUBJECT_ID':'Patient_ID', | |
'HADM_ID':'PAST_Admission_ID', | |
'INDEX_HADM_ID':'Admission_ID'}, inplace = True) | |
df4.rename(columns={'HADM_ID':'Admission_ID', | |
'full_24 Hour Events:':'Full Text', | |
'24 Hour Events:':'Change_Note', | |
'past_24 Hour Events:':'Past_Change_Note'}, inplace = True) | |
df4["Full Text"] =df4["Full Text"].replace('["[','').replace(']"]','') | |
## ========== Setting up Streamlit Sidebar ========== | |
st.set_page_config(page_title ='Patient Inpatient Progression Dashboard', | |
#page_icon= "Notes", | |
layout='wide') | |
st.title('Patient Inpatient Progression Dashboard') | |
st.markdown( | |
""" | |
<style> | |
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child { | |
width: 400px; | |
} | |
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child { | |
width: 400px; | |
margin-left: -230px; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.markdown('Using transformer model') | |
#Filter selection | |
st.sidebar.header("Search for Patient:") | |
# ===== Initial filter for patient and admission id ===== | |
patientid = df['Patient_ID'].unique() | |
patient = st.sidebar.selectbox('Select Patient ID:', patientid) #Filter Patient | |
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] #Filter available Admission id for patient | |
HospitalAdmission = st.sidebar.selectbox(' ', admissionid) | |
pastHistoryEpDate = df3['CHARTDATE_HADM_ID'].loc[(df3['Patient_ID'] == patient) & (df3['Admission_ID']== HospitalAdmission)] | |
countOfAdmission = len(pastHistoryEpDate) | |
# List of Model available | |
#model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer')) | |
model = 'BertSummarizer' | |
st.sidebar.markdown('Model: ' + model) | |
original_text = df.query( | |
"Patient_ID == @patient & Admission_ID == @HospitalAdmission" | |
) | |
original_text2 = original_text['Original_Text'].values | |
AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values | |
diagnosis =original_text['DIAGNOSIS'].values | |
reference_text = original_text['Reference_text'].values | |
dailyNoteChange =df4[['STORETIME','Change_Note','Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()] | |
dailyNoteFull =df4[['STORETIME','Change_Note','Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()] | |
dailyNoteChange.rename(columns={'STORETIME':'Time of Record', | |
'Change_Note':'Note Changes'}, inplace = True) | |
#dailyNoteChange['Time of Record'] = pd.to_datetime(dailyNoteChange['Time of Record']) | |
dailyNoteChange['TimeDiff'] = pd.to_datetime(dailyNoteChange["Time of Record"], format='%Y/%m/%d %H:%M') | |
#dailyNoteChange['TimeDiff'] = pd.to_datetime(dailyNoteChange["Time of Record"], format='%d/%m/%Y %H:%M') | |
dailyNoteChange['TimeDiff'] = dailyNoteChange['TimeDiff'] -dailyNoteChange['TimeDiff'].shift() | |
dailyNoteChange['TimeDiff'] = dailyNoteChange['TimeDiff'].fillna(pd.Timedelta(seconds=0)) | |
dailyNoteChange['TimeDiff']= dailyNoteChange['TimeDiff'].dt.total_seconds().div(60).astype(int) | |
dailyNoteChange['Hour'] = dailyNoteChange['TimeDiff'] // 60 | |
dailyNoteChange['Mins'] = dailyNoteChange['TimeDiff']- dailyNoteChange['Hour'] * 60 | |
dailyNoteChange["TimeDiff"] = dailyNoteChange['Hour'].astype(str) + " hours " + dailyNoteChange['Mins'].astype(str) + " Mins" | |
del dailyNoteChange['Hour'] | |
del dailyNoteChange['Mins'] | |
dailyNoteChange["PreviousRecord"] = dailyNoteChange["Time of Record"].shift() | |
dailyNoteChange.sort_values(by=['Time of Record'],ascending = False, inplace=True) | |
dailyNoteFull.rename(columns={'STORETIME':'Time of Record', | |
'Change_Note':'Note Changes'}, inplace = True) | |
dailyNote = df4['Full Text'].loc[(df4['Admission_ID']==HospitalAdmission)] | |
dailyNote = dailyNote.unique() | |
try: | |
mindate = min(dailyNoteFull['Time of Record']) | |
except: | |
mindate = '' | |
# ===== to display selected patient and admission id on main page | |
col3,col4 = st.columns(2) | |
patientid = col3.write(f"Patient ID: {patient} ") | |
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ") | |
##========= Buttons to the 3 tabs ======== Temp disabled Discharge Plan and Social Notes | |
col1, col2, col3 = st.columns([1,1,1]) | |
#col6, col7 =st.columns([2,2]) | |
with st.container(): | |
with col1: | |
btnAdmission = st.button("🏥 Admission") | |
with col2: | |
btnDailyNarrative = st.button('📆Daily Narrative') | |
with col3: | |
btnPastHistory = st.button('📇Past History (6 Mths)') | |
##======================== Start of NER Tagging ======================== | |
#lemmatizing the notes to capture all forms of negation(e.g., deny: denies, denying) | |
def lemmatize(note, nlp): | |
doc = nlp(note) | |
lemNote = [wd.lemma_ for wd in doc] | |
return " ".join(lemNote) | |
#function to modify options for displacy NER visualization | |
def get_entity_options(): | |
entities = ["DISEASE", "CHEMICAL", "NEG_ENTITY"] | |
colors = {'DISEASE': 'pink', 'CHEMICAL': 'orange', "NEG_ENTITY":'white'} | |
options = {"ents": entities, "colors": colors} | |
return options | |
#adding a new pipeline component to identify negation | |
def neg_model(): | |
nlp.add_pipe('sentencizer') | |
nlp.add_pipe( | |
"negex", | |
config={ | |
"chunk_prefix": ["no"], | |
}, | |
last=True) | |
return nlp | |
def negation_handling(note, neg_model): | |
results = [] | |
nlp = neg_model() | |
note = note.split(".") #sentence tokenizing based on delimeter | |
note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence | |
for t in note: | |
doc = nlp(t) | |
for e in doc.ents: | |
rs = str(e._.negex) | |
if rs == "True": | |
results.append(e.text) | |
return results | |
#function to identify span objects of matched negative phrases from text | |
def match(nlp,terms,label): | |
patterns = [nlp.make_doc(text) for text in terms] | |
matcher = PhraseMatcher(nlp.vocab) | |
matcher.add(label, None, *patterns) | |
return matcher | |
#replacing the labels for identified negative entities | |
def overwrite_ent_lbl(matcher, doc): | |
matches = matcher(doc) | |
seen_tokens = set() | |
new_entities = [] | |
entities = doc.ents | |
for match_id, start, end in matches: | |
if start not in seen_tokens and end - 1 not in seen_tokens: | |
new_entities.append(Span(doc, start, end, label=match_id)) | |
entities = [e for e in entities if not (e.start < end and e.end > start)] | |
seen_tokens.update(range(start, end)) | |
doc.ents = tuple(entities) + tuple(new_entities) | |
return doc | |
#deduplicate repeated entities | |
def dedupe(items): | |
seen = set() | |
for item in items: | |
item = str(item).strip() | |
if item not in seen: | |
yield item | |
seen.add(item) | |
##======================== End of NER Tagging ======================== | |
def run_model(input_text): | |
if model == "BertSummarizer": | |
output = original_text['BertSummarizer2s'].values | |
st.write('Summary') | |
elif model == "BertGPT2": | |
output = original_text['BertGPT2'].values | |
st.write('Summary') | |
elif model == "t5seq2eq": | |
output = original_text['t5seq2eq'].values | |
st.write('Summary') | |
elif model == "t5": | |
output = original_text['t5'].values | |
st.write('Summary') | |
elif model == "gensim": | |
output = original_text['gensim'].values | |
st.write('Summary') | |
elif model == "pysummarizer": | |
output = original_text['pysummarizer'].values | |
st.write('Summary') | |
st.success(output) | |
def Admission(): | |
with st.container(): | |
runtext =st.text_area('History of presenting illnesses at admission', str(original_text2)[1:-1], height=300) | |
lem_clinical_note= lemmatize(runtext, nlp) | |
#creating a doc object using BC5CDR model | |
doc = nlp(lem_clinical_note) | |
options = get_entity_options() | |
#list of negative concepts from clinical note identified by negspacy | |
results0 = negation_handling(lem_clinical_note, neg_model) | |
matcher = match(nlp, results0,"NEG_ENTITY") | |
#doc0: new doc object with added "NEG_ENTITY label" | |
doc0 = overwrite_ent_lbl(matcher,doc) | |
#visualizing identified Named Entities in clinical input text | |
ent_html = displacy.render(doc0, style='ent', options=options) | |
col1, col2 = st.columns([1,1]) | |
with st.container(): | |
with col1: | |
st.button('Summarize') | |
run_model(runtext) | |
with col2: | |
st.button('NER') | |
# ===== Adding the Disease/Chemical into a list ===== | |
problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE'])) | |
medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL'])) | |
st.markdown('**CHIEF COMPLAINT:**') | |
st.write(str(AdmissionChiefCom)[1:-1]) | |
st.markdown('**ADMISSION DIAGNOSIS:**') | |
st.markdown(str(diagnosis)[1:-1].capitalize()) | |
st.markdown('**PROBLEM/ISSUE**') | |
#st.markdown(problem_entities) | |
st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True) | |
#genEntities(trans_df, 'DISEASE') | |
st.markdown('**MEDICATION**') | |
st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True) | |
#genEntities(trans_df, 'CHEMICAL') | |
#st.table(trans_df) | |
st.markdown('**NER**') | |
with st.expander("See NER Details"): | |
st.markdown(ent_html, unsafe_allow_html=True) | |
alphabets= "([A-Za-z])" | |
prefixes = "(mr|st|mrs|ms|dr)[.]" | |
suffixes = "(inc|ltd|jr|sr|co)" | |
starters = "(mr|mrs|ms|dr|he\s|she\s|it\s|they\s|their\s|our\s|we\s|but\s|however\s|that\s|this\s|wherever)" | |
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)" | |
websites = "[.](com|net|org|io|gov)" | |
digits = "([0-9])" | |
def split_into_sentences(text): | |
# text = str(text) | |
text = " " + text + " " | |
text = text.replace("\n"," ") | |
# text = text.replace("[0-9]{4}-[0-9]{1,2}-[0-9]{1,2} [0-9]{2}:[0-9]{2}:[0-9]{2}"," ") | |
text = re.sub(prefixes,"\\1<prd>",text) | |
text = re.sub(websites,"<prd>\\1",text) | |
text = re.sub(digits + "[.]" + digits,"\\1<prd>\\2",text) | |
if "..." in text: text = text.replace("...","<prd><prd><prd>") | |
if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>") | |
text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text) | |
text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text) | |
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text) | |
text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text) | |
text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text) | |
text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text) | |
text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text) | |
if "”" in text: text = text.replace(".”","”.") | |
if "\"" in text: text = text.replace(".\"","\".") | |
if "!" in text: text = text.replace("!\"","\"!") | |
if "?" in text: text = text.replace("?\"","\"?") | |
text = text.replace(".",".<stop>") | |
text = text.replace("?","?<stop>") | |
text = text.replace("!","!<stop>") | |
text = text.replace("[0-9]{2}:[0-9]{2}:[0-9]{2}:","[0-9]{2}:[0-9]{2}:[0-9]{2}:<stop>") | |
text = text.replace("[0-9]{4}-[0-9]{1,2}-[0-9]{1,2}\s[0-9]{2}:[0-9]{2}:[0-9]{2}","[0-9]{4}-[0-9]{1,2}-[0-9]{1,2}\s[0-9]{2}:[0-9]{2}:[0-9]{2}<stop>") | |
# text = text.replace("-","-<stop>") | |
# text = text.replace("- -","- -<stop>") | |
text = text.replace("<br><br>","<stop><br><br>") | |
text = text.replace("<prd>",".") | |
sentences = text.split("<stop>") | |
# sentences = text.split('-') | |
# sentences = sentences[:-1] | |
sentences = [s.strip() for s in sentences] | |
return sentences | |
def DailyNarrative(): | |
with st.container(): | |
dailyNarrativeTime= st.selectbox('',dailyNoteChange['Time of Record']) | |
if df4[['Change_Note']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['STORETIME'] == dailyNarrativeTime)].size != 0: | |
changeNote = df4[['Change_Note']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['STORETIME'] == dailyNarrativeTime)].values[0] | |
else: | |
changeNote = 'No records' | |
if dailyNoteChange['TimeDiff'].loc[(dailyNoteChange['Time of Record']==dailyNarrativeTime)].empty: | |
changeNoteTime = 'No records' | |
previousRecord = ' ' | |
else: | |
changeNoteTime =dailyNoteChange['TimeDiff'].loc[(dailyNoteChange['Time of Record']==dailyNarrativeTime)].values[0] | |
previousRecord =dailyNoteChange['PreviousRecord'].loc[(dailyNoteChange['Time of Record']==dailyNarrativeTime)].values[0] | |
if dailyNarrativeTime == mindate: | |
changeNote = 'Nil' | |
else: | |
changeNote = str(changeNote).replace('["[','').replace(']"]','').replace("'","").replace('"','').replace(',','').replace('\\','').replace('[','').replace(']','').replace('\\','') | |
changeNote = changeNote.strip("[-,]").strip("") | |
changeNote = ' '.join(changeNote.split()) | |
# changeNote_split = re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])|-', changeNote) | |
# changeNote_split = [x.strip(' ') for x in changeNote_split] | |
changeNote_split = split_into_sentences(changeNote) | |
changeNote_split = [x for x in changeNote_split if x] | |
latestRecord = dailyNoteChange['Time of Record'].max() | |
st.markdown('Changes: ' + changeNote) | |
st.markdown('Changes recorded from previous record at ' + str(previousRecord) + ' , ' + str(changeNoteTime) + ' ago') | |
if df4[['Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['STORETIME'] == dailyNarrativeTime)].empty: | |
dailyNarrativeText = 'No Records' | |
else: | |
dailyNoteChange.sort_values(by='Time of Record',ascending = True, inplace=True) | |
dailyNoteChange["Combined"] = '' | |
count = 0 | |
text ='' | |
for index, row in dailyNoteChange.iterrows(): | |
text = '[**' + str(row['Time of Record']) + '**]' + ':<stop> ' + row['Full Text'] + '<br>' + '<br>' + text | |
dailyNoteChange['Combined'].iloc[count] = text | |
count = count + 1 | |
dailyNarrativeText =dailyNoteChange[['Combined']].loc[(dailyNoteChange['Time of Record'] == dailyNarrativeTime)].values[0] | |
#dailyNarrativeText =df4[['Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & (df4['DATETIME'] == dailyNarrativeTime)].values[0] | |
dailyNarrativeText = str(dailyNarrativeText).replace('["[','').replace(']"]','').replace("'","").replace(',','').replace('"','').replace('[','').replace(']','').replace('\\','') | |
dailyNarrativeText = dailyNarrativeText.strip("[-,]").strip(" ") | |
dailyNarrativeText = ' '.join(dailyNarrativeText.split()) | |
# dailyNarrativeText_split = re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])|-|<br><br>', dailyNarrativeText) | |
# dailyNarrativeText_split = [x.strip(' ') for x in dailyNarrativeText_split] | |
dailyNarrativeText_split = split_into_sentences(dailyNarrativeText) | |
#st.table(dailyNoteChange) # testing to see if data calculate correctly | |
with st.expander("See in detail"): | |
ls = [] | |
for sent in dailyNarrativeText_split: | |
if sent in changeNote_split: | |
sent = sent.replace(str(sent),str(annotation(sent))) | |
ls.append(sent) | |
else: | |
ls.append(sent) | |
highlight = ' '.join(ls) | |
st.markdown(highlight, unsafe_allow_html=True) | |
def PastHistory(): | |
col6, col7 =st.columns([2,2]) | |
with st.container(): | |
with col6: | |
st.markdown('**No. of admission past 6 months:**') | |
st.markdown(countOfAdmission) | |
with col7: | |
#st.date_input('Select Admission Date') # To replace with a dropdown filter instead | |
#st.selectbox('Past Episodes',pastHistoryEp) | |
pastHistory = st.selectbox('Select Past History Admission', pastHistoryEpDate, format_func=lambda x: 'Select an option' if x == '' else x) | |
historyAdmission = df3.query( | |
"Patient_ID == @patient & CHARTDATE_HADM_ID == @pastHistory" | |
) | |
if historyAdmission.shape[0] == 0: | |
runtext = "No past episodes" | |
else: | |
#runtext = historyAdmission['hospital_course_processed'].values[0] | |
runtext = historyAdmission['hospital_course_processed'].values[0] | |
lem_clinical_note= lemmatize(runtext, nlp) | |
#creating a doc object using BC5CDR model | |
doc = nlp(lem_clinical_note) | |
options = get_entity_options() | |
#list of negative concepts from clinical note identified by negspacy | |
results0 = negation_handling(lem_clinical_note, neg_model) | |
matcher = match(nlp, results0,"NEG_ENTITY") | |
#doc0: new doc object with added "NEG_ENTITY label" | |
doc0 = overwrite_ent_lbl(matcher,doc) | |
#visualizing identified Named Entities in clinical input text | |
ent_html = displacy.render(doc0, style='ent', options=options) | |
# ===== Adding the Disease/Chemical into a list ===== | |
problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE'])) | |
medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL'])) | |
if historyAdmission.shape[0] == 0: | |
st.markdown('Admission Date: NA') | |
st.markdown('Date of Discharge: NA') | |
st.markdown('Days from current admission: NA') | |
else: | |
st.markdown('Admission Date: ' + historyAdmission['ADMITTIME'].values[0]) | |
st.markdown('Date of Discharge: ' + historyAdmission['DISCHTIME'].values[0]) | |
st.markdown('Days from current admission: ' + str(historyAdmission['days_from_index'].values[0]) +' days') | |
#st.markdown('Summary: ') | |
st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Summary: </b></p>', unsafe_allow_html=True) | |
if model == "BertSummarizer": | |
if historyAdmission.shape[0] == 0: | |
st.markdown('NA') | |
else: | |
st.markdown(str(historyAdmission['BertSummarizer'].values[0])) | |
elif model == "t5seq2eq": | |
if historyAdmission.shape[0] == 0: | |
st.markdown('NA') | |
else: | |
st.markdown(str(historyAdmission['t5seq2eq'].values[0])) | |
st.markdown(f'<p style="color:#080808;font-size:16px;"><b>Diagnosis: </b></p>', unsafe_allow_html=True) | |
if historyAdmission.shape[0] == 0: | |
st.markdown('NA') | |
else: | |
st.markdown(str(historyAdmission['Diagnosis_Description'].values[0])) | |
st.markdown('**PROBLEM/ISSUE**') | |
st.markdown(f'<p style="background-color:PINK;color:#080808;font-size:16px;">{str(problem_entities)[1:-1]}</p>', unsafe_allow_html=True) | |
st.markdown('**MEDICATION**') | |
st.markdown(f'<p style="background-color:orange;color:#080808;font-size:16px;">{str(medication_entities)[1:-1]}</p>', unsafe_allow_html=True) | |
st.markdown('Discharge Disposition: ' + str(historyAdmission['DISCHARGE_LOCATION'].values[0])) | |
with st.expander('Full Discharge Summary'): | |
#st.write("line 1 \n line 2 \n line 3") | |
fulldischargesummary = historyAdmission['TEXT'].values[0] | |
st.write(fulldischargesummary) | |
if "load_state" not in st.session_state: | |
st.session_state.load_state = False | |
if "admission_button_clicked" not in st.session_state: | |
st.session_state.admission_button_clicked = False | |
if "daily_button_clicked" not in st.session_state: | |
st.session_state.daily_button_clicked = False | |
if "past_button_clicked" not in st.session_state: | |
st.session_state.past_button_clicked = False | |
if btnAdmission or st.session_state["admission_button_clicked"]: | |
#st.session_state["admission_button_clicked"] = True | |
st.session_state["daily_button_clicked"] = False | |
st.session_state["past_button_clicked"] = False | |
Admission() | |
if btnDailyNarrative or st.session_state["daily_button_clicked"]: | |
#st.session_state["daily_button_clicked"] = True | |
st.session_state["admission_button_clicked"] = False | |
st.session_state["past_button_clicked"] = False | |
DailyNarrative() | |
if btnPastHistory or st.session_state["past_button_clicked"]: | |
#st.session_state["past_button_clicked"] = True | |
st.session_state["daily_button_clicked"] = False | |
st.session_state["admission_button_clicked"] = False | |
PastHistory() | |