carisackc commited on
Commit
26357eb
·
1 Parent(s): cd3133a

Upload 2 files

Browse files
Summarization_Simple_25Nov.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from math import ceil
5
+ from collections import Counter
6
+ from string import punctuation
7
+
8
+ #nlp = en_core_web_lg.load()
9
+
10
+ st.set_page_config(layout='wide')
11
+ st.title('Clinical Note Summarization')
12
+ st.sidebar.markdown('Using transformer model')
13
+
14
+ ## Loading in dataset
15
+ #df = pd.read_csv('mtsamples_small.csv',index_col=0)
16
+ df = pd.read_csv('shpi_w_rouge21Nov.csv')
17
+ df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
18
+
19
+ #Renaming column
20
+ df.rename(columns={'SUBJECT_ID':'Patient_ID',
21
+ 'HADM_ID':'Admission_ID',
22
+ 'hpi_input_text':'Original_Text',
23
+ 'hpi_reference_summary':'Reference_text'}, inplace = True)
24
+
25
+ #data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
26
+
27
+ #Filter selection
28
+ st.sidebar.header("Search for Patient:")
29
+
30
+ patientid = df['Patient_ID']
31
+ patient = st.sidebar.selectbox('Select Patient ID:', patientid)
32
+ admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
33
+ HospitalAdmission = st.sidebar.selectbox('', admissionid)
34
+
35
+ # List of Model available
36
+ model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
37
+
38
+ col3,col4 = st.columns(2)
39
+ patientid = col3.write(f"Patient ID: {patient} ")
40
+ admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
41
+
42
+ #text = st.text_area('Input Clinical Note here')
43
+
44
+ # Query out relevant Clinical notes
45
+ original_text = df.query(
46
+ "Patient_ID == @patient & Admission_ID == @HospitalAdmission"
47
+ )
48
+
49
+ original_text2 = original_text['Original_Text'].values
50
+
51
+ runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)
52
+
53
+ reference_text = original_text['Reference_text'].values
54
+
55
+ def run_model(input_text):
56
+
57
+ if model == "BertSummarizer":
58
+ output = original_text['BertSummarizer'].values
59
+ st.write('Summary')
60
+ st.success(output[0])
61
+
62
+ elif model == "BertGPT2":
63
+ output = original_text['BertGPT2'].values
64
+ st.write('Summary')
65
+ st.success(output[0])
66
+
67
+
68
+ elif model == "t5seq2eq":
69
+ output = original_text['t5seq2eq'].values
70
+ st.write('Summary')
71
+ st.success(output)
72
+
73
+ elif model == "t5":
74
+ output = original_text['t5'].values
75
+ st.write('Summary')
76
+ st.success(output)
77
+
78
+ elif model == "gensim":
79
+ output = original_text['gensim'].values
80
+ st.write('Summary')
81
+ st.success(output)
82
+
83
+ elif model == "pysummarizer":
84
+ output = original_text['pysummarizer'].values
85
+ st.write('Summary')
86
+ st.success(output)
87
+
88
+ if st.button('Submit'):
89
+ run_model(runtext)
90
+
91
+ sentences=runtext.split('.')
92
+ def visualize(title, sentence_list, best_sentences):
93
+ text = ''
94
+
95
+ #display(HTML(f'<h1>Summary - {title}</h1>'))
96
+ for sentence in sentence_list:
97
+ if sentence in best_sentences:
98
+ #text += ' ' + str(sentence).replace(sentence, f"<mark>{sentence}</mark>")
99
+ text += ' ' + str(sentence).replace(sentence, f"<span class='highlight yellow'>{sentence}</span>")
100
+ else:
101
+ text += ' ' + sentence
102
+ display(HTML(f""" {text} """))
103
+
104
+ output = ''
105
+ best_sentences = []
106
+ for sentence in output:
107
+ #print(sentence)
108
+ best_sentences.append(str(sentence))
109
+ return text
110
+
111
+ t = "<div>Hello there my <span class='highlight blue'>name <span class='bold'>yo</span> </span> is <span class='highlight red'>Fanilo <span class='bold'>Name</span></span></div>"
112
+
113
+ st.write("<div>Hello there my <span class='highlight blue'>name <span class='bold'>yo</span> </span> is <span class='highlight red'>Fanilo <span class='bold'>Name</span></span></div>")
114
+
115
+ st.text_area('Reference text', str(reference_text))
demo_shpi_w_rouge25Nov.csv ADDED
The diff for this file is too large to render. See raw diff