Spaces:
Build error
Build error
Upload 2 files
Browse files- Summarization_Simple_25Nov.py +115 -0
- demo_shpi_w_rouge25Nov.csv +0 -0
Summarization_Simple_25Nov.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from math import ceil
|
5 |
+
from collections import Counter
|
6 |
+
from string import punctuation
|
7 |
+
|
8 |
+
#nlp = en_core_web_lg.load()
|
9 |
+
|
10 |
+
st.set_page_config(layout='wide')
|
11 |
+
st.title('Clinical Note Summarization')
|
12 |
+
st.sidebar.markdown('Using transformer model')
|
13 |
+
|
14 |
+
## Loading in dataset
|
15 |
+
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
|
16 |
+
df = pd.read_csv('shpi_w_rouge21Nov.csv')
|
17 |
+
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
|
18 |
+
|
19 |
+
#Renaming column
|
20 |
+
df.rename(columns={'SUBJECT_ID':'Patient_ID',
|
21 |
+
'HADM_ID':'Admission_ID',
|
22 |
+
'hpi_input_text':'Original_Text',
|
23 |
+
'hpi_reference_summary':'Reference_text'}, inplace = True)
|
24 |
+
|
25 |
+
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
|
26 |
+
|
27 |
+
#Filter selection
|
28 |
+
st.sidebar.header("Search for Patient:")
|
29 |
+
|
30 |
+
patientid = df['Patient_ID']
|
31 |
+
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
|
32 |
+
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
|
33 |
+
HospitalAdmission = st.sidebar.selectbox('', admissionid)
|
34 |
+
|
35 |
+
# List of Model available
|
36 |
+
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
|
37 |
+
|
38 |
+
col3,col4 = st.columns(2)
|
39 |
+
patientid = col3.write(f"Patient ID: {patient} ")
|
40 |
+
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
|
41 |
+
|
42 |
+
#text = st.text_area('Input Clinical Note here')
|
43 |
+
|
44 |
+
# Query out relevant Clinical notes
|
45 |
+
original_text = df.query(
|
46 |
+
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
|
47 |
+
)
|
48 |
+
|
49 |
+
original_text2 = original_text['Original_Text'].values
|
50 |
+
|
51 |
+
runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)
|
52 |
+
|
53 |
+
reference_text = original_text['Reference_text'].values
|
54 |
+
|
55 |
+
def run_model(input_text):
|
56 |
+
|
57 |
+
if model == "BertSummarizer":
|
58 |
+
output = original_text['BertSummarizer'].values
|
59 |
+
st.write('Summary')
|
60 |
+
st.success(output[0])
|
61 |
+
|
62 |
+
elif model == "BertGPT2":
|
63 |
+
output = original_text['BertGPT2'].values
|
64 |
+
st.write('Summary')
|
65 |
+
st.success(output[0])
|
66 |
+
|
67 |
+
|
68 |
+
elif model == "t5seq2eq":
|
69 |
+
output = original_text['t5seq2eq'].values
|
70 |
+
st.write('Summary')
|
71 |
+
st.success(output)
|
72 |
+
|
73 |
+
elif model == "t5":
|
74 |
+
output = original_text['t5'].values
|
75 |
+
st.write('Summary')
|
76 |
+
st.success(output)
|
77 |
+
|
78 |
+
elif model == "gensim":
|
79 |
+
output = original_text['gensim'].values
|
80 |
+
st.write('Summary')
|
81 |
+
st.success(output)
|
82 |
+
|
83 |
+
elif model == "pysummarizer":
|
84 |
+
output = original_text['pysummarizer'].values
|
85 |
+
st.write('Summary')
|
86 |
+
st.success(output)
|
87 |
+
|
88 |
+
if st.button('Submit'):
|
89 |
+
run_model(runtext)
|
90 |
+
|
91 |
+
sentences=runtext.split('.')
|
92 |
+
def visualize(title, sentence_list, best_sentences):
|
93 |
+
text = ''
|
94 |
+
|
95 |
+
#display(HTML(f'<h1>Summary - {title}</h1>'))
|
96 |
+
for sentence in sentence_list:
|
97 |
+
if sentence in best_sentences:
|
98 |
+
#text += ' ' + str(sentence).replace(sentence, f"<mark>{sentence}</mark>")
|
99 |
+
text += ' ' + str(sentence).replace(sentence, f"<span class='highlight yellow'>{sentence}</span>")
|
100 |
+
else:
|
101 |
+
text += ' ' + sentence
|
102 |
+
display(HTML(f""" {text} """))
|
103 |
+
|
104 |
+
output = ''
|
105 |
+
best_sentences = []
|
106 |
+
for sentence in output:
|
107 |
+
#print(sentence)
|
108 |
+
best_sentences.append(str(sentence))
|
109 |
+
return text
|
110 |
+
|
111 |
+
t = "<div>Hello there my <span class='highlight blue'>name <span class='bold'>yo</span> </span> is <span class='highlight red'>Fanilo <span class='bold'>Name</span></span></div>"
|
112 |
+
|
113 |
+
st.write("<div>Hello there my <span class='highlight blue'>name <span class='bold'>yo</span> </span> is <span class='highlight red'>Fanilo <span class='bold'>Name</span></span></div>")
|
114 |
+
|
115 |
+
st.text_area('Reference text', str(reference_text))
|
demo_shpi_w_rouge25Nov.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|