carisackc commited on
Commit
7a7a355
·
1 Parent(s): c595ce1

Upload Summarization_Simple_29Nov.py

Browse files
Files changed (1) hide show
  1. Summarization_Simple_29Nov.py +118 -0
Summarization_Simple_29Nov.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from math import ceil
5
+ from collections import Counter
6
+ from string import punctuation
7
+ import spacy
8
+ from spacy import displacy
9
+ import en_ner_bc5cdr_md
10
+
11
+ # Store the initial value of widgets in session state
12
+ if "visibility" not in st.session_state:
13
+ st.session_state.visibility = "visible"
14
+ st.session_state.disabled = False
15
+
16
+ #nlp = en_core_web_lg.load()
17
+ nlp = spacy.load("en_ner_bc5cdr_md")
18
+
19
+ st.set_page_config(layout='wide')
20
+ st.title('Clinical Note Summarization')
21
+ st.sidebar.markdown('Using transformer model')
22
+
23
+ ## Loading in dataset
24
+ #df = pd.read_csv('mtsamples_small.csv',index_col=0)
25
+ df = pd.read_csv('shpi_w_rouge21Nov.csv')
26
+
27
+ #Renaming column
28
+ df.rename(columns={'SUBJECT_ID':'Patient_ID',
29
+ 'HADM_ID':'Admission_ID',
30
+ 'hpi_input_text':'Original_Text',
31
+ 'hpi_reference_summary':'Reference_text'}, inplace = True)
32
+
33
+ #data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
34
+
35
+ #Filter selection
36
+ st.sidebar.header("Search for Patient:")
37
+
38
+ patientid = df['Patient_ID']
39
+ patient = st.sidebar.selectbox('Select Patient ID:', patientid)
40
+ admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
41
+ HospitalAdmission = st.sidebar.selectbox('', admissionid)
42
+
43
+ # List of Model available
44
+ model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
45
+
46
+ col3,col4 = st.columns(2)
47
+ patientid = col3.write(f"Patient ID: {patient} ")
48
+ admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
49
+
50
+ col1, col2 = st.columns(2)
51
+ #_min_length = col1.number_input("Minimum Length", value=_min_length)
52
+ #_max_length = col2.number_input("Maximun Length", value=_max_length)
53
+ ##_early_stopping = col3.number_input("early_stopping", value=_early_stopping)
54
+
55
+ #text = st.text_area('Input Clinical Note here')
56
+
57
+ # Query out relevant Clinical notes
58
+ original_text = df.query(
59
+ "Patient_ID == @patient & Admission_ID == @HospitalAdmission"
60
+ )
61
+
62
+ original_text2 = original_text['Original_Text'].values
63
+
64
+ runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)
65
+
66
+ reference_text = original_text['Reference_text'].values
67
+
68
+ def run_model(input_text):
69
+
70
+ if model == "BertSummarizer":
71
+ output = original_text['BertSummarizer'].values
72
+ st.write('Summary')
73
+ st.success(output[0])
74
+
75
+ elif model == "BertGPT2":
76
+ output = original_text['BertGPT2'].values
77
+ st.write('Summary')
78
+ st.success(output[0])
79
+
80
+
81
+ elif model == "t5seq2eq":
82
+ output = original_text['t5seq2eq'].values
83
+ st.write('Summary')
84
+ st.success(output)
85
+
86
+ elif model == "t5":
87
+ output = original_text['t5'].values
88
+ st.write('Summary')
89
+ st.success(output)
90
+
91
+ elif model == "gensim":
92
+ output = original_text['gensim'].values
93
+ st.write('Summary')
94
+ st.success(output)
95
+
96
+ elif model == "pysummarizer":
97
+ output = original_text['pysummarizer'].values
98
+ st.write('Summary')
99
+ st.success(output)
100
+
101
+ col1, col2 = st.columns([1,1])
102
+
103
+ with col1:
104
+ st.button('Summarize')
105
+ run_model(runtext)
106
+ sentences=runtext.split('.')
107
+ st.text_area('Reference text', str(reference_text),label_visibility="hidden")
108
+ with col2:
109
+ st.button('NER')
110
+ doc = nlp(str(original_text2))
111
+ colors = { "DISEASE": "pink","CHEMICAL": "orange"}
112
+ options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
113
+ ent_html = displacy.render(doc, style="ent", options=options)
114
+ st.markdown(ent_html, unsafe_allow_html=True)
115
+
116
+
117
+
118
+