carisackc commited on
Commit
83aac3a
·
1 Parent(s): ea72b31

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -136
app.py CHANGED
@@ -1,142 +1,28 @@
1
  import streamlit as st
2
- import pandas as pd
3
- import numpy as np
4
- from math import ceil
5
- from collections import Counter
6
- from string import punctuation
7
- import spacy
8
- from spacy import displacy
9
- import en_ner_bc5cdr_md
10
 
11
- # Store the initial value of widgets in session state
12
- if "visibility" not in st.session_state:
13
- st.session_state.visibility = "visible"
14
- st.session_state.disabled = False
15
-
16
- #nlp = en_core_web_lg.load()
17
- nlp = spacy.load("en_ner_bc5cdr_md")
18
-
19
- st.set_page_config(page_title ='Clinical Note Summarization',
20
- #page_icon= "Notes",
21
- layout='wide')
22
- st.title('Clinical Note Summarization')
23
- st.markdown(
24
- """
25
- <style>
26
- [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
27
- width: 400px;
28
- }
29
- [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
30
- width: 400px;
31
- margin-left: -230px;
32
- }
33
- </style>
34
- """,
35
- unsafe_allow_html=True,
36
- )
37
- st.sidebar.markdown('Using transformer model')
38
-
39
- ## Loading in dataset
40
- #df = pd.read_csv('mtsamples_small.csv',index_col=0)
41
- df = pd.read_csv('shpi_w_rouge21Nov.csv')
42
- df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
43
-
44
- #Renaming column
45
- df.rename(columns={'SUBJECT_ID':'Patient_ID',
46
- 'HADM_ID':'Admission_ID',
47
- 'hpi_input_text':'Original_Text',
48
- 'hpi_reference_summary':'Reference_text'}, inplace = True)
49
-
50
- #data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
51
-
52
- #Filter selection
53
- st.sidebar.header("Search for Patient:")
54
-
55
- patientid = df['Patient_ID']
56
- patient = st.sidebar.selectbox('Select Patient ID:', patientid)
57
- admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
58
- HospitalAdmission = st.sidebar.selectbox('', admissionid)
59
-
60
- # List of Model available
61
- model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
62
-
63
- col3,col4 = st.columns(2)
64
- patientid = col3.write(f"Patient ID: {patient} ")
65
- admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
66
-
67
-
68
- ##========= Buttons to the 4 tabs ========
69
- col1, col2, col3, col4 = st.columns(4)
70
- with col1:
71
- # st.button('Admission')
72
- st.button("🏥 Admission")
73
- with col2:
74
- st.button('📆Daily Narrative')
75
- with col3:
76
- st.button('Discharge Plan')
77
- with col4:
78
- st.button('📝Social Notes')
79
-
80
-
81
- # Query out relevant Clinical notes
82
- original_text = df.query(
83
- "Patient_ID == @patient & Admission_ID == @HospitalAdmission"
84
  )
85
 
86
- original_text2 = original_text['Original_Text'].values
87
-
88
- runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)
89
-
90
- reference_text = original_text['Reference_text'].values
91
-
92
- def run_model(input_text):
93
 
94
- if model == "BertSummarizer":
95
- output = original_text['BertSummarizer'].values
96
- st.write('Summary')
97
- st.success(output[0])
98
-
99
- elif model == "BertGPT2":
100
- output = original_text['BertGPT2'].values
101
- st.write('Summary')
102
- st.success(output[0])
103
-
104
-
105
- elif model == "t5seq2eq":
106
- output = original_text['t5seq2eq'].values
107
- st.write('Summary')
108
- st.success(output)
109
-
110
- elif model == "t5":
111
- output = original_text['t5'].values
112
- st.write('Summary')
113
- st.success(output)
114
-
115
- elif model == "gensim":
116
- output = original_text['gensim'].values
117
- st.write('Summary')
118
- st.success(output)
119
-
120
- elif model == "pysummarizer":
121
- output = original_text['pysummarizer'].values
122
- st.write('Summary')
123
- st.success(output)
124
-
125
- col1, col2 = st.columns([1,1])
126
-
127
- with col1:
128
- st.button('Summarize')
129
- run_model(runtext)
130
- sentences=runtext.split('.')
131
- st.text_area('Reference text', str(reference_text))#,label_visibility="hidden")
132
- with col2:
133
- st.button('NER')
134
- doc = nlp(str(original_text2))
135
- colors = { "DISEASE": "pink","CHEMICAL": "orange"}
136
- options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
137
- ent_html = displacy.render(doc, style="ent", options=options)
138
- st.markdown(ent_html, unsafe_allow_html=True)
139
-
140
-
141
-
142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
 
 
 
 
 
 
 
 
2
 
3
+ st.set_page_config(
4
+ page_title="Hello",
5
+ page_icon="👋",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  )
7
 
8
+ st.write("# Welcome to Streamlit! 👋")
 
 
 
 
 
 
9
 
10
+ st.sidebar.success("Select a demo above.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ st.markdown(
13
+ """
14
+ Streamlit is an open-source app framework built specifically for
15
+ Machine Learning and Data Science projects.
16
+ **👈 Select a demo from the sidebar** to see some examples
17
+ of what Streamlit can do!
18
+ ### Want to learn more?
19
+ - Check out [streamlit.io](https://streamlit.io)
20
+ - Jump into our [documentation](https://docs.streamlit.io)
21
+ - Ask a question in our [community
22
+ forums](https://discuss.streamlit.io)
23
+ ### See more complex demos
24
+ - Use a neural net to [analyze the Udacity Self-driving Car Image
25
+ Dataset](https://github.com/streamlit/demo-self-driving)
26
+ - Explore a [New York City rideshare dataset](https://github.com/streamlit/demo-uber-nyc-pickups)
27
+ """
28
+ )