Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,142 +1,28 @@
|
|
1 |
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
from math import ceil
|
5 |
-
from collections import Counter
|
6 |
-
from string import punctuation
|
7 |
-
import spacy
|
8 |
-
from spacy import displacy
|
9 |
-
import en_ner_bc5cdr_md
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
st.session_state.disabled = False
|
15 |
-
|
16 |
-
#nlp = en_core_web_lg.load()
|
17 |
-
nlp = spacy.load("en_ner_bc5cdr_md")
|
18 |
-
|
19 |
-
st.set_page_config(page_title ='Clinical Note Summarization',
|
20 |
-
#page_icon= "Notes",
|
21 |
-
layout='wide')
|
22 |
-
st.title('Clinical Note Summarization')
|
23 |
-
st.markdown(
|
24 |
-
"""
|
25 |
-
<style>
|
26 |
-
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
|
27 |
-
width: 400px;
|
28 |
-
}
|
29 |
-
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
|
30 |
-
width: 400px;
|
31 |
-
margin-left: -230px;
|
32 |
-
}
|
33 |
-
</style>
|
34 |
-
""",
|
35 |
-
unsafe_allow_html=True,
|
36 |
-
)
|
37 |
-
st.sidebar.markdown('Using transformer model')
|
38 |
-
|
39 |
-
## Loading in dataset
|
40 |
-
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
|
41 |
-
df = pd.read_csv('shpi_w_rouge21Nov.csv')
|
42 |
-
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
|
43 |
-
|
44 |
-
#Renaming column
|
45 |
-
df.rename(columns={'SUBJECT_ID':'Patient_ID',
|
46 |
-
'HADM_ID':'Admission_ID',
|
47 |
-
'hpi_input_text':'Original_Text',
|
48 |
-
'hpi_reference_summary':'Reference_text'}, inplace = True)
|
49 |
-
|
50 |
-
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
|
51 |
-
|
52 |
-
#Filter selection
|
53 |
-
st.sidebar.header("Search for Patient:")
|
54 |
-
|
55 |
-
patientid = df['Patient_ID']
|
56 |
-
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
|
57 |
-
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
|
58 |
-
HospitalAdmission = st.sidebar.selectbox('', admissionid)
|
59 |
-
|
60 |
-
# List of Model available
|
61 |
-
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
|
62 |
-
|
63 |
-
col3,col4 = st.columns(2)
|
64 |
-
patientid = col3.write(f"Patient ID: {patient} ")
|
65 |
-
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
|
66 |
-
|
67 |
-
|
68 |
-
##========= Buttons to the 4 tabs ========
|
69 |
-
col1, col2, col3, col4 = st.columns(4)
|
70 |
-
with col1:
|
71 |
-
# st.button('Admission')
|
72 |
-
st.button("🏥 Admission")
|
73 |
-
with col2:
|
74 |
-
st.button('📆Daily Narrative')
|
75 |
-
with col3:
|
76 |
-
st.button('Discharge Plan')
|
77 |
-
with col4:
|
78 |
-
st.button('📝Social Notes')
|
79 |
-
|
80 |
-
|
81 |
-
# Query out relevant Clinical notes
|
82 |
-
original_text = df.query(
|
83 |
-
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
|
84 |
)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)
|
89 |
-
|
90 |
-
reference_text = original_text['Reference_text'].values
|
91 |
-
|
92 |
-
def run_model(input_text):
|
93 |
|
94 |
-
|
95 |
-
output = original_text['BertSummarizer'].values
|
96 |
-
st.write('Summary')
|
97 |
-
st.success(output[0])
|
98 |
-
|
99 |
-
elif model == "BertGPT2":
|
100 |
-
output = original_text['BertGPT2'].values
|
101 |
-
st.write('Summary')
|
102 |
-
st.success(output[0])
|
103 |
-
|
104 |
-
|
105 |
-
elif model == "t5seq2eq":
|
106 |
-
output = original_text['t5seq2eq'].values
|
107 |
-
st.write('Summary')
|
108 |
-
st.success(output)
|
109 |
-
|
110 |
-
elif model == "t5":
|
111 |
-
output = original_text['t5'].values
|
112 |
-
st.write('Summary')
|
113 |
-
st.success(output)
|
114 |
-
|
115 |
-
elif model == "gensim":
|
116 |
-
output = original_text['gensim'].values
|
117 |
-
st.write('Summary')
|
118 |
-
st.success(output)
|
119 |
-
|
120 |
-
elif model == "pysummarizer":
|
121 |
-
output = original_text['pysummarizer'].values
|
122 |
-
st.write('Summary')
|
123 |
-
st.success(output)
|
124 |
-
|
125 |
-
col1, col2 = st.columns([1,1])
|
126 |
-
|
127 |
-
with col1:
|
128 |
-
st.button('Summarize')
|
129 |
-
run_model(runtext)
|
130 |
-
sentences=runtext.split('.')
|
131 |
-
st.text_area('Reference text', str(reference_text))#,label_visibility="hidden")
|
132 |
-
with col2:
|
133 |
-
st.button('NER')
|
134 |
-
doc = nlp(str(original_text2))
|
135 |
-
colors = { "DISEASE": "pink","CHEMICAL": "orange"}
|
136 |
-
options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
|
137 |
-
ent_html = displacy.render(doc, style="ent", options=options)
|
138 |
-
st.markdown(ent_html, unsafe_allow_html=True)
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
st.set_page_config(
|
4 |
+
page_title="Hello",
|
5 |
+
page_icon="👋",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
)
|
7 |
|
8 |
+
st.write("# Welcome to Streamlit! 👋")
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
st.sidebar.success("Select a demo above.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
st.markdown(
|
13 |
+
"""
|
14 |
+
Streamlit is an open-source app framework built specifically for
|
15 |
+
Machine Learning and Data Science projects.
|
16 |
+
**👈 Select a demo from the sidebar** to see some examples
|
17 |
+
of what Streamlit can do!
|
18 |
+
### Want to learn more?
|
19 |
+
- Check out [streamlit.io](https://streamlit.io)
|
20 |
+
- Jump into our [documentation](https://docs.streamlit.io)
|
21 |
+
- Ask a question in our [community
|
22 |
+
forums](https://discuss.streamlit.io)
|
23 |
+
### See more complex demos
|
24 |
+
- Use a neural net to [analyze the Udacity Self-driving Car Image
|
25 |
+
Dataset](https://github.com/streamlit/demo-self-driving)
|
26 |
+
- Explore a [New York City rideshare dataset](https://github.com/streamlit/demo-uber-nyc-pickups)
|
27 |
+
"""
|
28 |
+
)
|