Spaces:
Build error
Build error
Create pages/2_Daily Narrative
Browse files- pages/2_Daily Narrative +174 -0
pages/2_Daily Narrative
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from math import ceil
|
5 |
+
from collections import Counter
|
6 |
+
from string import punctuation
|
7 |
+
import spacy
|
8 |
+
from spacy import displacy
|
9 |
+
import en_ner_bc5cdr_md
|
10 |
+
|
11 |
+
|
12 |
+
from streamlit.components.v1 import html
|
13 |
+
|
14 |
+
def nav_page(page_name, timeout_secs=3):
|
15 |
+
nav_script = """
|
16 |
+
<script type="text/javascript">
|
17 |
+
function attempt_nav_page(page_name, start_time, timeout_secs) {
|
18 |
+
var links = window.parent.document.getElementsByTagName("a");
|
19 |
+
for (var i = 0; i < links.length; i++) {
|
20 |
+
if (links[i].href.toLowerCase().endsWith("/" + page_name.toLowerCase())) {
|
21 |
+
links[i].click();
|
22 |
+
return;
|
23 |
+
}
|
24 |
+
}
|
25 |
+
var elasped = new Date() - start_time;
|
26 |
+
if (elasped < timeout_secs * 1000) {
|
27 |
+
setTimeout(attempt_nav_page, 100, page_name, start_time, timeout_secs);
|
28 |
+
} else {
|
29 |
+
alert("Unable to navigate to page '" + page_name + "' after " + timeout_secs + " second(s).");
|
30 |
+
}
|
31 |
+
}
|
32 |
+
window.addEventListener("load", function() {
|
33 |
+
attempt_nav_page("%s", new Date(), %d);
|
34 |
+
});
|
35 |
+
</script>
|
36 |
+
""" % (page_name, timeout_secs)
|
37 |
+
html(nav_script)
|
38 |
+
|
39 |
+
|
40 |
+
# Store the initial value of widgets in session state
|
41 |
+
if "visibility" not in st.session_state:
|
42 |
+
st.session_state.visibility = "visible"
|
43 |
+
st.session_state.disabled = False
|
44 |
+
|
45 |
+
#nlp = en_core_web_lg.load()
|
46 |
+
nlp = spacy.load("en_ner_bc5cdr_md")
|
47 |
+
|
48 |
+
st.set_page_config(page_title ='📆Daily Narrative',
|
49 |
+
#page_icon= "Notes",
|
50 |
+
layout='wide')
|
51 |
+
st.title('Clinical Note Summarization - Admission')
|
52 |
+
st.markdown(
|
53 |
+
"""
|
54 |
+
<style>
|
55 |
+
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
|
56 |
+
width: 400px;
|
57 |
+
}
|
58 |
+
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
|
59 |
+
width: 400px;
|
60 |
+
margin-left: -230px;
|
61 |
+
}
|
62 |
+
</style>
|
63 |
+
""",
|
64 |
+
unsafe_allow_html=True,
|
65 |
+
)
|
66 |
+
st.sidebar.markdown('Using transformer model')
|
67 |
+
|
68 |
+
## Loading in dataset
|
69 |
+
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
|
70 |
+
df = pd.read_csv('shpi_w_rouge21Nov.csv')
|
71 |
+
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
|
72 |
+
|
73 |
+
#Renaming column
|
74 |
+
df.rename(columns={'SUBJECT_ID':'Patient_ID',
|
75 |
+
'HADM_ID':'Admission_ID',
|
76 |
+
'hpi_input_text':'Original_Text',
|
77 |
+
'hpi_reference_summary':'Reference_text'}, inplace = True)
|
78 |
+
|
79 |
+
#data.rename(columns={'gdp':'log(gdp)'}, inplace=True)
|
80 |
+
|
81 |
+
#Filter selection
|
82 |
+
st.sidebar.header("Search for Patient:")
|
83 |
+
|
84 |
+
patientid = df['Patient_ID']
|
85 |
+
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
|
86 |
+
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
|
87 |
+
HospitalAdmission = st.sidebar.selectbox('', admissionid)
|
88 |
+
|
89 |
+
# List of Model available
|
90 |
+
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
|
91 |
+
|
92 |
+
col3,col4 = st.columns(2)
|
93 |
+
patientid = col3.write(f"Patient ID: {patient} ")
|
94 |
+
admissionid =col4.write(f"Admission ID: {HospitalAdmission} ")
|
95 |
+
|
96 |
+
|
97 |
+
##========= Buttons to the 4 tabs ========
|
98 |
+
col1, col2, col3, col4 = st.columns(4)
|
99 |
+
with col1:
|
100 |
+
# st.button('Admission')
|
101 |
+
if st.button("🏥 Admission"):
|
102 |
+
nav_page('Admission')
|
103 |
+
|
104 |
+
with col2:
|
105 |
+
if st.button('📆Daily Narrative'):
|
106 |
+
nav_page('Daily Narrative')
|
107 |
+
|
108 |
+
with col3:
|
109 |
+
if st.button('Discharge Plan'):
|
110 |
+
nav_page('Discharge Plan')
|
111 |
+
with col4:
|
112 |
+
if st.button('📝Social Notes'):
|
113 |
+
nav_page('Social Notes')
|
114 |
+
|
115 |
+
|
116 |
+
# Query out relevant Clinical notes
|
117 |
+
original_text = df.query(
|
118 |
+
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
|
119 |
+
)
|
120 |
+
|
121 |
+
original_text2 = original_text['Original_Text'].values
|
122 |
+
|
123 |
+
runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300)
|
124 |
+
|
125 |
+
reference_text = original_text['Reference_text'].values
|
126 |
+
|
127 |
+
def run_model(input_text):
|
128 |
+
|
129 |
+
if model == "BertSummarizer":
|
130 |
+
output = original_text['BertSummarizer'].values
|
131 |
+
st.write('Summary')
|
132 |
+
st.success(output[0])
|
133 |
+
|
134 |
+
elif model == "BertGPT2":
|
135 |
+
output = original_text['BertGPT2'].values
|
136 |
+
st.write('Summary')
|
137 |
+
st.success(output[0])
|
138 |
+
|
139 |
+
|
140 |
+
elif model == "t5seq2eq":
|
141 |
+
output = original_text['t5seq2eq'].values
|
142 |
+
st.write('Summary')
|
143 |
+
st.success(output)
|
144 |
+
|
145 |
+
elif model == "t5":
|
146 |
+
output = original_text['t5'].values
|
147 |
+
st.write('Summary')
|
148 |
+
st.success(output)
|
149 |
+
|
150 |
+
elif model == "gensim":
|
151 |
+
output = original_text['gensim'].values
|
152 |
+
st.write('Summary')
|
153 |
+
st.success(output)
|
154 |
+
|
155 |
+
elif model == "pysummarizer":
|
156 |
+
output = original_text['pysummarizer'].values
|
157 |
+
st.write('Summary')
|
158 |
+
st.success(output)
|
159 |
+
|
160 |
+
col1, col2 = st.columns([1,1])
|
161 |
+
|
162 |
+
with col1:
|
163 |
+
st.button('Summarize')
|
164 |
+
run_model(runtext)
|
165 |
+
sentences=runtext.split('.')
|
166 |
+
st.text_area('Reference text', str(reference_text))#,label_visibility="hidden")
|
167 |
+
with col2:
|
168 |
+
st.button('NER')
|
169 |
+
doc = nlp(str(original_text2))
|
170 |
+
colors = { "DISEASE": "pink","CHEMICAL": "orange"}
|
171 |
+
options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
|
172 |
+
ent_html = displacy.render(doc, style="ent", options=options)
|
173 |
+
st.markdown(ent_html, unsafe_allow_html=True)
|
174 |
+
|