carisackc commited on
Commit
a409e47
·
1 Parent(s): 7b16692

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -23
app.py CHANGED
@@ -23,8 +23,6 @@ if "visibility" not in st.session_state:
23
 
24
  #nlp = en_core_web_lg.load()
25
  nlp = spacy.load("en_ner_bc5cdr_md")
26
- #nlp0 = spacy.load("en_ner_bc5cdr_md")
27
- #nlp1 = spacy.load("en_ner_bc5cdr_md")
28
 
29
  st.set_page_config(page_title ='Clinical Note Summarization',
30
  #page_icon= "Notes",
@@ -194,11 +192,8 @@ def get_entity_options():
194
  return options
195
 
196
  #adding a new pipeline component to identify negation
197
- def neg_model(nlp_model):
198
- nlp = spacy.load(nlp_model, disable = ['parser'])
199
- # nlp.add_pipe(nlp.create_pipe('sentencizer'))
200
  nlp.add_pipe('sentencizer')
201
- # negex = Negex(nlp)
202
  nlp.add_pipe(
203
  "negex",
204
  config={
@@ -207,9 +202,9 @@ def neg_model(nlp_model):
207
  last=True)
208
  return nlp
209
 
210
- def negation_handling(nlp_model, note, neg_model):
211
  results = []
212
- nlp = neg_model(nlp_model)
213
  note = note.split(".") #sentence tokenizing based on delimeter
214
  note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence
215
  for t in note:
@@ -252,11 +247,11 @@ def dedupe(items):
252
 
253
  lem_clinical_note= lemmatize(runtext, nlp0)
254
  #creating a doc object using BC5CDR model
255
- doc = nlp1(lem_clinical_note)
256
  options = get_entity_options()
257
 
258
  #list of negative concepts from clinical note identified by negspacy
259
- results0 = negation_handling("en_ner_bc5cdr_md", lem_clinical_note, neg_model)
260
 
261
  matcher = match(nlp, results0,"NEG_ENTITY")
262
 
@@ -315,15 +310,18 @@ with col1:
315
  fulldischargesummary = historyAdmission['TEXT'].values
316
  st.write( str(fulldischargesummary))
317
  ##====== Storing the Diseases/Text
318
- table= {"Entity":[], "Class":[]}
319
- ent_bc = {}
320
- for x in doc.ents:
321
- ent_bc[x.text] = x.label_
322
- for key in ent_bc:
323
- table["Entity"].append(key)
324
- table["Class"].append(ent_bc[key])
325
- trans_df = pd.DataFrame(table)
326
-
 
 
 
327
  with col2:
328
  st.button('NER')
329
  st.markdown('**CHIEF COMPLAINT:**')
@@ -331,13 +329,11 @@ with col2:
331
  st.markdown('**ADMISSION DIAGNOSIS:**')
332
  st.markdown(str(diagnosis))
333
  st.markdown('**PROBLEM/ISSUE**')
 
334
  genEntities(trans_df, 'DISEASE')
335
  st.markdown('**MEDICATION**')
336
  genEntities(trans_df, 'CHEMICAL')
337
  #st.table(trans_df)
338
  st.markdown('**NER**')
339
  with st.expander("See NER Details"):
340
- st.markdown(ent_html, unsafe_allow_html=True)
341
-
342
-
343
-
 
23
 
24
  #nlp = en_core_web_lg.load()
25
  nlp = spacy.load("en_ner_bc5cdr_md")
 
 
26
 
27
  st.set_page_config(page_title ='Clinical Note Summarization',
28
  #page_icon= "Notes",
 
192
  return options
193
 
194
  #adding a new pipeline component to identify negation
195
+ def neg_model():
 
 
196
  nlp.add_pipe('sentencizer')
 
197
  nlp.add_pipe(
198
  "negex",
199
  config={
 
202
  last=True)
203
  return nlp
204
 
205
+ def negation_handling(note, neg_model):
206
  results = []
207
+ nlp = neg_model()
208
  note = note.split(".") #sentence tokenizing based on delimeter
209
  note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence
210
  for t in note:
 
247
 
248
  lem_clinical_note= lemmatize(runtext, nlp0)
249
  #creating a doc object using BC5CDR model
250
+ doc = nlp(lem_clinical_note)
251
  options = get_entity_options()
252
 
253
  #list of negative concepts from clinical note identified by negspacy
254
+ results0 = negation_handling(lem_clinical_note, neg_model)
255
 
256
  matcher = match(nlp, results0,"NEG_ENTITY")
257
 
 
310
  fulldischargesummary = historyAdmission['TEXT'].values
311
  st.write( str(fulldischargesummary))
312
  ##====== Storing the Diseases/Text
313
+ # table= {"Entity":[], "Class":[]}
314
+ # ent_bc = {}
315
+ # for x in doc.ents:
316
+ # ent_bc[x.text] = x.label_
317
+ # for key in ent_bc:
318
+ # table["Entity"].append(key)
319
+ # table["Class"].append(ent_bc[key])
320
+ # trans_df = pd.DataFrame(table)
321
+
322
+ problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE']))
323
+ medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL']))
324
+
325
  with col2:
326
  st.button('NER')
327
  st.markdown('**CHIEF COMPLAINT:**')
 
329
  st.markdown('**ADMISSION DIAGNOSIS:**')
330
  st.markdown(str(diagnosis))
331
  st.markdown('**PROBLEM/ISSUE**')
332
+ st.markdown(f'<p style="background-color:{problem_entities};color:#080808;font-size:16px;">{entlist}</p>', unsafe_allow_html=True)
333
  genEntities(trans_df, 'DISEASE')
334
  st.markdown('**MEDICATION**')
335
  genEntities(trans_df, 'CHEMICAL')
336
  #st.table(trans_df)
337
  st.markdown('**NER**')
338
  with st.expander("See NER Details"):
339
+ st.markdown(ent_html, unsafe_allow_html=True)