carisackc commited on
Commit
d6bebc4
·
1 Parent(s): 606fc01

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -43
app.py CHANGED
@@ -44,8 +44,15 @@ st.sidebar.markdown('Using transformer model')
44
  ## Loading in dataset
45
  #df = pd.read_csv('mtsamples_small.csv',index_col=0)
46
  df = pd.read_csv('shpi_w_rouge21Nov.csv')
 
 
 
 
 
 
47
  df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
48
 
 
49
  #Renaming column
50
  df.rename(columns={'SUBJECT_ID':'Patient_ID',
51
  'HADM_ID':'Admission_ID',
@@ -60,7 +67,7 @@ st.sidebar.header("Search for Patient:")
60
  patientid = df['Patient_ID']
61
  patient = st.sidebar.selectbox('Select Patient ID:', patientid)
62
  admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
63
- HospitalAdmission = st.sidebar.selectbox('', admissionid)
64
 
65
  # List of Model available
66
  model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
@@ -75,31 +82,47 @@ original_text = df.query(
75
  "Patient_ID == @patient & Admission_ID == @HospitalAdmission"
76
  )
77
  original_text2 = original_text['Original_Text'].values
 
 
78
  reference_text = original_text['Reference_text'].values
79
 
80
- ##========= Buttons to the 4 tabs ========
81
- col1, col2, col3, col4 = st.columns(4)
82
-
83
- with col1:
84
- if st.button("🏥 Admission"):
85
- #nav_page('Admission')
86
- inputNote = "Input Admission Note"
87
-
88
- with col2:
89
- if st.button('📆Daily Narrative'):
90
- #nav_page('Daily Narrative')
91
- inputNote = "Input Daily Narrative Note"
92
- with col3:
93
- if st.button('🗒️Discharge Plan'):
94
- #nav_page('Discharge Plan')
95
- inputNote = "Input Discharge Plan"
96
- with col4:
97
- if st.button('📝Social Notes'):
98
- #nav_page('Social Notes')
99
- inputNote = "Input Social Note"
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  runtext =st.text_area(inputNote, str(original_text2), height=300)
102
 
 
103
  # Extract words associated with each entity
104
  def genEntities(ann, entity):
105
  # entity colour dict
@@ -112,27 +135,12 @@ def genEntities(ann, entity):
112
  ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique())
113
  entlist = ",".join(ent)
114
  st.markdown(f'<p style="background-color:{ent_col[entity]};color:#080808;font-size:16px;">{entlist}</p>', unsafe_allow_html=True)
115
- #for i in ent:
116
- #st.markdown(f'<p style="color:{ent_col[entity]};font-size:20px;">{i}</p>', unsafe_allow_html=True)
117
-
118
 
119
  def visualize (run_text,output):
120
  text =''
121
  splitruntext = [x for x in runtext.split('.')]
122
  splitoutput = [x for x in output.split('.')]
123
- # best_sentences = []
124
- # for sentence in output:
125
- # best_sentences.append(str(sentence))
126
-
127
- # text = ''
128
-
129
- # #display(HTML(f'<h1>Summary - {title}</h1>'))
130
- # for sentence in run_text:
131
- # if sentence in best_sentences:
132
- # text += ' ' + str(sentence).replace(sentence, f"<mark>{sentence}</mark>")
133
- # else:
134
- # text += ' ' + sentence
135
- # display(HTML(f""" {text} """))
136
  return splitoutput,splitruntext
137
 
138
 
@@ -162,19 +170,19 @@ def run_model(input_text):
162
  output = original_text['pysummarizer'].values
163
  st.write('Summary')
164
 
165
- #st.text_area(visualize (runtext,output))
166
  st.success(output)
167
- # return output
168
  doc = nlp(str(original_text2))
169
  colors = { "DISEASE": "pink","CHEMICAL": "orange"}
170
  options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
171
  ent_html = displacy.render(doc, style="ent", options=options)
172
 
173
- col1, col2 = st.columns([1,2])
174
  with col1:
175
  st.button('Summarize')
176
  run_model(runtext)
177
- sentences=runtext.split('.')
178
  st.text_area('Reference text', str(reference_text), height=150)
179
  ##====== Storing the Diseases/Text
180
  table= {"Entity":[], "Class":[]}
@@ -188,13 +196,18 @@ with col1:
188
 
189
  with col2:
190
  st.button('NER')
191
- st.markdown('**DISEASE**')
 
 
 
 
192
  genEntities(trans_df, 'DISEASE')
193
- st.markdown('**CHEMICAL**')
194
  genEntities(trans_df, 'CHEMICAL')
195
  #st.table(trans_df)
196
  st.markdown('**NER**')
197
  st.markdown(ent_html, unsafe_allow_html=True)
 
198
 
199
 
200
 
 
44
  ## Loading in dataset
45
  #df = pd.read_csv('mtsamples_small.csv',index_col=0)
46
  df = pd.read_csv('shpi_w_rouge21Nov.csv')
47
+ #Loading in Admission chief Complaint and diagnosis
48
+ df2 = pd.read_csv('cohort_cc_adm_diag.csv')
49
+
50
+ #combining both data into one
51
+ df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])
52
+
53
  df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
54
 
55
+
56
  #Renaming column
57
  df.rename(columns={'SUBJECT_ID':'Patient_ID',
58
  'HADM_ID':'Admission_ID',
 
67
  patientid = df['Patient_ID']
68
  patient = st.sidebar.selectbox('Select Patient ID:', patientid)
69
  admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
70
+ HospitalAdmission = st.sidebar.selectbox(' ', admissionid)
71
 
72
  # List of Model available
73
  model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
 
82
  "Patient_ID == @patient & Admission_ID == @HospitalAdmission"
83
  )
84
  original_text2 = original_text['Original_Text'].values
85
+ AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values
86
+ diagnosis =original_text['DIAGNOSIS'].values
87
  reference_text = original_text['Reference_text'].values
88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89
 
90
+ ##========= Buttons to the 4 tabs ========
91
+ col1, col2, col3, col4, col5 = st.columns([1,1,1,1,1])
92
+ col6, col7 =st.columns([2,2])
93
+ with st.container():
94
+ with col1:
95
+ btnAdmission = st.button("🏥 Admission")
96
+ if btnAdmission:
97
+ #nav_page('Admission')
98
+ inputNote = "Input Admission Note"
99
+ with col2:
100
+ btnDailyNarrative = st.button('📆Daily Narrative')
101
+ if btnDailyNarrative:
102
+ inputNote = "Input Daily Narrative Note"
103
+ with col3:
104
+ btnDischargePlan = st.button('🗒️Discharge Plan')
105
+ if btnDischargePlan:
106
+ inputNote = "Input Discharge Plan"
107
+ with col4:
108
+ btnSocialNotes = st.button('📝Social Notes')
109
+ if btnSocialNotes:
110
+ inputNote = "Input Social Note"
111
+ with col5:
112
+ btnPastHistory = st.button('📇Past History (6 Mths)')
113
+ if btnPastHistory:
114
+ inputNote = "Input History records"
115
+
116
+ with st.container():
117
+ if btnPastHistory:
118
+ with col6:
119
+ st.markdown('**No. of admission past 6 months: xx**')
120
+ with col7:
121
+ st.date_input('Select Admission Date')
122
+
123
  runtext =st.text_area(inputNote, str(original_text2), height=300)
124
 
125
+
126
  # Extract words associated with each entity
127
  def genEntities(ann, entity):
128
  # entity colour dict
 
135
  ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique())
136
  entlist = ",".join(ent)
137
  st.markdown(f'<p style="background-color:{ent_col[entity]};color:#080808;font-size:16px;">{entlist}</p>', unsafe_allow_html=True)
138
+
 
 
139
 
140
  def visualize (run_text,output):
141
  text =''
142
  splitruntext = [x for x in runtext.split('.')]
143
  splitoutput = [x for x in output.split('.')]
 
 
 
 
 
 
 
 
 
 
 
 
 
144
  return splitoutput,splitruntext
145
 
146
 
 
170
  output = original_text['pysummarizer'].values
171
  st.write('Summary')
172
 
173
+
174
  st.success(output)
175
+
176
  doc = nlp(str(original_text2))
177
  colors = { "DISEASE": "pink","CHEMICAL": "orange"}
178
  options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
179
  ent_html = displacy.render(doc, style="ent", options=options)
180
 
181
+ col1, col2 = st.columns([1,1])
182
  with col1:
183
  st.button('Summarize')
184
  run_model(runtext)
185
+ #sentences=runtext.split('.')
186
  st.text_area('Reference text', str(reference_text), height=150)
187
  ##====== Storing the Diseases/Text
188
  table= {"Entity":[], "Class":[]}
 
196
 
197
  with col2:
198
  st.button('NER')
199
+ st.markdown('**CHIEF COMPLAINT:**')
200
+ st.write(str(AdmissionChiefCom))
201
+ st.markdown('**ADMISSION DIAGNOSIS:**')
202
+ st.markdown(str(diagnosis))
203
+ st.markdown('**PROBLEM/ISSUE**')
204
  genEntities(trans_df, 'DISEASE')
205
+ st.markdown('**MEDICATION**')
206
  genEntities(trans_df, 'CHEMICAL')
207
  #st.table(trans_df)
208
  st.markdown('**NER**')
209
  st.markdown(ent_html, unsafe_allow_html=True)
210
+
211
 
212
 
213