Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -44,8 +44,15 @@ st.sidebar.markdown('Using transformer model')
|
|
44 |
## Loading in dataset
|
45 |
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
|
46 |
df = pd.read_csv('shpi_w_rouge21Nov.csv')
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
|
48 |
|
|
|
49 |
#Renaming column
|
50 |
df.rename(columns={'SUBJECT_ID':'Patient_ID',
|
51 |
'HADM_ID':'Admission_ID',
|
@@ -60,7 +67,7 @@ st.sidebar.header("Search for Patient:")
|
|
60 |
patientid = df['Patient_ID']
|
61 |
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
|
62 |
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
|
63 |
-
HospitalAdmission = st.sidebar.selectbox('', admissionid)
|
64 |
|
65 |
# List of Model available
|
66 |
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
|
@@ -75,31 +82,47 @@ original_text = df.query(
|
|
75 |
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
|
76 |
)
|
77 |
original_text2 = original_text['Original_Text'].values
|
|
|
|
|
78 |
reference_text = original_text['Reference_text'].values
|
79 |
|
80 |
-
##========= Buttons to the 4 tabs ========
|
81 |
-
col1, col2, col3, col4 = st.columns(4)
|
82 |
-
|
83 |
-
with col1:
|
84 |
-
if st.button("🏥 Admission"):
|
85 |
-
#nav_page('Admission')
|
86 |
-
inputNote = "Input Admission Note"
|
87 |
-
|
88 |
-
with col2:
|
89 |
-
if st.button('📆Daily Narrative'):
|
90 |
-
#nav_page('Daily Narrative')
|
91 |
-
inputNote = "Input Daily Narrative Note"
|
92 |
-
with col3:
|
93 |
-
if st.button('🗒️Discharge Plan'):
|
94 |
-
#nav_page('Discharge Plan')
|
95 |
-
inputNote = "Input Discharge Plan"
|
96 |
-
with col4:
|
97 |
-
if st.button('📝Social Notes'):
|
98 |
-
#nav_page('Social Notes')
|
99 |
-
inputNote = "Input Social Note"
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
runtext =st.text_area(inputNote, str(original_text2), height=300)
|
102 |
|
|
|
103 |
# Extract words associated with each entity
|
104 |
def genEntities(ann, entity):
|
105 |
# entity colour dict
|
@@ -112,27 +135,12 @@ def genEntities(ann, entity):
|
|
112 |
ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique())
|
113 |
entlist = ",".join(ent)
|
114 |
st.markdown(f'<p style="background-color:{ent_col[entity]};color:#080808;font-size:16px;">{entlist}</p>', unsafe_allow_html=True)
|
115 |
-
|
116 |
-
#st.markdown(f'<p style="color:{ent_col[entity]};font-size:20px;">{i}</p>', unsafe_allow_html=True)
|
117 |
-
|
118 |
|
119 |
def visualize (run_text,output):
|
120 |
text =''
|
121 |
splitruntext = [x for x in runtext.split('.')]
|
122 |
splitoutput = [x for x in output.split('.')]
|
123 |
-
# best_sentences = []
|
124 |
-
# for sentence in output:
|
125 |
-
# best_sentences.append(str(sentence))
|
126 |
-
|
127 |
-
# text = ''
|
128 |
-
|
129 |
-
# #display(HTML(f'<h1>Summary - {title}</h1>'))
|
130 |
-
# for sentence in run_text:
|
131 |
-
# if sentence in best_sentences:
|
132 |
-
# text += ' ' + str(sentence).replace(sentence, f"<mark>{sentence}</mark>")
|
133 |
-
# else:
|
134 |
-
# text += ' ' + sentence
|
135 |
-
# display(HTML(f""" {text} """))
|
136 |
return splitoutput,splitruntext
|
137 |
|
138 |
|
@@ -162,19 +170,19 @@ def run_model(input_text):
|
|
162 |
output = original_text['pysummarizer'].values
|
163 |
st.write('Summary')
|
164 |
|
165 |
-
|
166 |
st.success(output)
|
167 |
-
|
168 |
doc = nlp(str(original_text2))
|
169 |
colors = { "DISEASE": "pink","CHEMICAL": "orange"}
|
170 |
options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
|
171 |
ent_html = displacy.render(doc, style="ent", options=options)
|
172 |
|
173 |
-
col1, col2 = st.columns([1,
|
174 |
with col1:
|
175 |
st.button('Summarize')
|
176 |
run_model(runtext)
|
177 |
-
sentences=runtext.split('.')
|
178 |
st.text_area('Reference text', str(reference_text), height=150)
|
179 |
##====== Storing the Diseases/Text
|
180 |
table= {"Entity":[], "Class":[]}
|
@@ -188,13 +196,18 @@ with col1:
|
|
188 |
|
189 |
with col2:
|
190 |
st.button('NER')
|
191 |
-
st.markdown('**
|
|
|
|
|
|
|
|
|
192 |
genEntities(trans_df, 'DISEASE')
|
193 |
-
st.markdown('**
|
194 |
genEntities(trans_df, 'CHEMICAL')
|
195 |
#st.table(trans_df)
|
196 |
st.markdown('**NER**')
|
197 |
st.markdown(ent_html, unsafe_allow_html=True)
|
|
|
198 |
|
199 |
|
200 |
|
|
|
44 |
## Loading in dataset
|
45 |
#df = pd.read_csv('mtsamples_small.csv',index_col=0)
|
46 |
df = pd.read_csv('shpi_w_rouge21Nov.csv')
|
47 |
+
#Loading in Admission chief Complaint and diagnosis
|
48 |
+
df2 = pd.read_csv('cohort_cc_adm_diag.csv')
|
49 |
+
|
50 |
+
#combining both data into one
|
51 |
+
df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID'])
|
52 |
+
|
53 |
df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0',''))
|
54 |
|
55 |
+
|
56 |
#Renaming column
|
57 |
df.rename(columns={'SUBJECT_ID':'Patient_ID',
|
58 |
'HADM_ID':'Admission_ID',
|
|
|
67 |
patientid = df['Patient_ID']
|
68 |
patient = st.sidebar.selectbox('Select Patient ID:', patientid)
|
69 |
admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient]
|
70 |
+
HospitalAdmission = st.sidebar.selectbox(' ', admissionid)
|
71 |
|
72 |
# List of Model available
|
73 |
model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer'))
|
|
|
82 |
"Patient_ID == @patient & Admission_ID == @HospitalAdmission"
|
83 |
)
|
84 |
original_text2 = original_text['Original_Text'].values
|
85 |
+
AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values
|
86 |
+
diagnosis =original_text['DIAGNOSIS'].values
|
87 |
reference_text = original_text['Reference_text'].values
|
88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
##========= Buttons to the 4 tabs ========
|
91 |
+
col1, col2, col3, col4, col5 = st.columns([1,1,1,1,1])
|
92 |
+
col6, col7 =st.columns([2,2])
|
93 |
+
with st.container():
|
94 |
+
with col1:
|
95 |
+
btnAdmission = st.button("🏥 Admission")
|
96 |
+
if btnAdmission:
|
97 |
+
#nav_page('Admission')
|
98 |
+
inputNote = "Input Admission Note"
|
99 |
+
with col2:
|
100 |
+
btnDailyNarrative = st.button('📆Daily Narrative')
|
101 |
+
if btnDailyNarrative:
|
102 |
+
inputNote = "Input Daily Narrative Note"
|
103 |
+
with col3:
|
104 |
+
btnDischargePlan = st.button('🗒️Discharge Plan')
|
105 |
+
if btnDischargePlan:
|
106 |
+
inputNote = "Input Discharge Plan"
|
107 |
+
with col4:
|
108 |
+
btnSocialNotes = st.button('📝Social Notes')
|
109 |
+
if btnSocialNotes:
|
110 |
+
inputNote = "Input Social Note"
|
111 |
+
with col5:
|
112 |
+
btnPastHistory = st.button('📇Past History (6 Mths)')
|
113 |
+
if btnPastHistory:
|
114 |
+
inputNote = "Input History records"
|
115 |
+
|
116 |
+
with st.container():
|
117 |
+
if btnPastHistory:
|
118 |
+
with col6:
|
119 |
+
st.markdown('**No. of admission past 6 months: xx**')
|
120 |
+
with col7:
|
121 |
+
st.date_input('Select Admission Date')
|
122 |
+
|
123 |
runtext =st.text_area(inputNote, str(original_text2), height=300)
|
124 |
|
125 |
+
|
126 |
# Extract words associated with each entity
|
127 |
def genEntities(ann, entity):
|
128 |
# entity colour dict
|
|
|
135 |
ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique())
|
136 |
entlist = ",".join(ent)
|
137 |
st.markdown(f'<p style="background-color:{ent_col[entity]};color:#080808;font-size:16px;">{entlist}</p>', unsafe_allow_html=True)
|
138 |
+
|
|
|
|
|
139 |
|
140 |
def visualize (run_text,output):
|
141 |
text =''
|
142 |
splitruntext = [x for x in runtext.split('.')]
|
143 |
splitoutput = [x for x in output.split('.')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
return splitoutput,splitruntext
|
145 |
|
146 |
|
|
|
170 |
output = original_text['pysummarizer'].values
|
171 |
st.write('Summary')
|
172 |
|
173 |
+
|
174 |
st.success(output)
|
175 |
+
|
176 |
doc = nlp(str(original_text2))
|
177 |
colors = { "DISEASE": "pink","CHEMICAL": "orange"}
|
178 |
options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors}
|
179 |
ent_html = displacy.render(doc, style="ent", options=options)
|
180 |
|
181 |
+
col1, col2 = st.columns([1,1])
|
182 |
with col1:
|
183 |
st.button('Summarize')
|
184 |
run_model(runtext)
|
185 |
+
#sentences=runtext.split('.')
|
186 |
st.text_area('Reference text', str(reference_text), height=150)
|
187 |
##====== Storing the Diseases/Text
|
188 |
table= {"Entity":[], "Class":[]}
|
|
|
196 |
|
197 |
with col2:
|
198 |
st.button('NER')
|
199 |
+
st.markdown('**CHIEF COMPLAINT:**')
|
200 |
+
st.write(str(AdmissionChiefCom))
|
201 |
+
st.markdown('**ADMISSION DIAGNOSIS:**')
|
202 |
+
st.markdown(str(diagnosis))
|
203 |
+
st.markdown('**PROBLEM/ISSUE**')
|
204 |
genEntities(trans_df, 'DISEASE')
|
205 |
+
st.markdown('**MEDICATION**')
|
206 |
genEntities(trans_df, 'CHEMICAL')
|
207 |
#st.table(trans_df)
|
208 |
st.markdown('**NER**')
|
209 |
st.markdown(ent_html, unsafe_allow_html=True)
|
210 |
+
|
211 |
|
212 |
|
213 |
|