import streamlit as st import pandas as pd import numpy as np from math import ceil from collections import Counter from string import punctuation import spacy from spacy import displacy from spacy.lang.en import English import en_ner_bc5cdr_md from streamlit.components.v1 import html # Store the initial value of widgets in session state if "visibility" not in st.session_state: st.session_state.visibility = "visible" st.session_state.disabled = False #nlp = en_core_web_lg.load() nlp = spacy.load("en_ner_bc5cdr_md") st.set_page_config(page_title ='Clinical Note Summarization', #page_icon= "Notes", layout='wide') st.title('Clinical Note Summarization') st.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.markdown('Using transformer model') ## Loading in dataset #df = pd.read_csv('mtsamples_small.csv',index_col=0) df = pd.read_csv('shpi_w_rouge21Nov.csv') #Loading in Admission chief Complaint and diagnosis df2 = pd.read_csv('cohort_cc_adm_diag.csv') #combining both data into one df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID']) df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) #Renaming column df.rename(columns={'SUBJECT_ID':'Patient_ID', 'HADM_ID':'Admission_ID', 'hpi_input_text':'Original_Text', 'hpi_reference_summary':'Reference_text'}, inplace = True) #data.rename(columns={'gdp':'log(gdp)'}, inplace=True) #Filter selection st.sidebar.header("Search for Patient:") patientid = df['Patient_ID'] patient = st.sidebar.selectbox('Select Patient ID:', patientid) admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] HospitalAdmission = st.sidebar.selectbox(' ', admissionid) # List of Model available model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer')) col3,col4 = st.columns(2) patientid = col3.write(f"Patient ID: {patient} ") admissionid =col4.write(f"Admission ID: {HospitalAdmission} ") runtext = '' inputNote ='Input note here:' # Query out relevant Clinical notes original_text = df.query( "Patient_ID == @patient & Admission_ID == @HospitalAdmission" ) original_text2 = original_text['Original_Text'].values AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values diagnosis =original_text['DIAGNOSIS'].values reference_text = original_text['Reference_text'].values ##========= Buttons to the 4 tabs ======== col1, col2, col3, col4, col5 = st.columns([1,1,1,1,1]) col6, col7 =st.columns([2,2]) with st.container(): with col1: btnAdmission = st.button("🏥 Admission") if btnAdmission: #nav_page('Admission') inputNote = "Input Admission Note" with col2: btnDailyNarrative = st.button('📆Daily Narrative') if btnDailyNarrative: inputNote = "Input Daily Narrative Note" with col3: btnDischargePlan = st.button('🗒️Discharge Plan') if btnDischargePlan: inputNote = "Input Discharge Plan" with col4: btnSocialNotes = st.button('📝Social Notes') if btnSocialNotes: inputNote = "Input Social Note" with col5: btnPastHistory = st.button('📇Past History (6 Mths)') if btnPastHistory: inputNote = "Input History records" with st.container(): if btnPastHistory: with col6: st.markdown('**No. of admission past 6 months: xx**') with col7: st.date_input('Select Admission Date') runtext =st.text_area(inputNote, str(original_text2), height=300) # Extract words associated with each entity def genEntities(ann, entity): # entity colour dict #ent_col = {'DISEASE':'#B42D1B', 'CHEMICAL':'#F06292'} ent_col = {'DISEASE':'pink', 'CHEMICAL':'orange'} # separate into the different entities entities = trans_df['Class'].unique() if entity in entities: ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique()) entlist = ",".join(ent) st.markdown(f'
{entlist}
', unsafe_allow_html=True) def visualize (run_text,output): text ='' splitruntext = [x for x in runtext.split('.')] splitoutput = [x for x in output.split('.')] return splitoutput,splitruntext def run_model(input_text): if model == "BertSummarizer": output = original_text['BertSummarizer'].values st.write('Summary') elif model == "BertGPT2": output = original_text['BertGPT2'].values st.write('Summary') elif model == "t5seq2eq": output = original_text['t5seq2eq'].values st.write('Summary') elif model == "t5": output = original_text['t5'].values st.write('Summary') elif model == "gensim": output = original_text['gensim'].values st.write('Summary') elif model == "pysummarizer": output = original_text['pysummarizer'].values st.write('Summary') st.success(output) doc = nlp(str(original_text2)) colors = { "DISEASE": "pink","CHEMICAL": "orange"} options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors} ent_html = displacy.render(doc, style="ent", options=options) col1, col2 = st.columns([1,1]) with col1: st.button('Summarize') run_model(runtext) #sentences=runtext.split('.') st.text_area('Reference text', str(reference_text), height=150) ##====== Storing the Diseases/Text table= {"Entity":[], "Class":[]} ent_bc = {} for x in doc.ents: ent_bc[x.text] = x.label_ for key in ent_bc: table["Entity"].append(key) table["Class"].append(ent_bc[key]) trans_df = pd.DataFrame(table) with col2: st.button('NER') st.markdown('**CHIEF COMPLAINT:**') st.write(str(AdmissionChiefCom)) st.markdown('**ADMISSION DIAGNOSIS:**') st.markdown(str(diagnosis)) st.markdown('**PROBLEM/ISSUE**') genEntities(trans_df, 'DISEASE') st.markdown('**MEDICATION**') genEntities(trans_df, 'CHEMICAL') #st.table(trans_df) st.markdown('**NER**') st.markdown(ent_html, unsafe_allow_html=True)