import streamlit as st import pandas as pd import numpy as np from math import ceil from collections import Counter from string import punctuation import spacy from spacy import displacy import en_ner_bc5cdr_md # Store the initial value of widgets in session state if "visibility" not in st.session_state: st.session_state.visibility = "visible" st.session_state.disabled = False #nlp = en_core_web_lg.load() nlp = spacy.load("en_ner_bc5cdr_md") st.set_page_config(page_title ='📆 Daily Narrative', layout='wide') st.title('Clinical Note Summarization') st.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.markdown('Using transformer model') ## Loading in dataset #df = pd.read_csv('mtsamples_small.csv',index_col=0) df = pd.read_csv('shpi_w_rouge21Nov.csv') df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) #Renaming column df.rename(columns={'SUBJECT_ID':'Patient_ID', 'HADM_ID':'Admission_ID', 'hpi_input_text':'Original_Text', 'hpi_reference_summary':'Reference_text'}, inplace = True) #data.rename(columns={'gdp':'log(gdp)'}, inplace=True) #Filter selection st.sidebar.header("Search for Patient:") patientid = df['Patient_ID'] patient = st.sidebar.selectbox('Select Patient ID:', patientid) admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] HospitalAdmission = st.sidebar.selectbox('', admissionid) # List of Model available model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer')) col3,col4 = st.columns(2) patientid = col3.write(f"Patient ID: {patient} ") admissionid =col4.write(f"Admission ID: {HospitalAdmission} ") ##========= Buttons to the 4 tabs ======== col1, col2, col3, col4 = st.columns(4) with col1: # st.button('Admission') st.button("🏥 Admission") with col2: st.button('📆Daily Narrative') with col3: st.button('Discharge Plan') with col4: st.button('📝Social Notes') # Query out relevant Clinical notes original_text = df.query( "Patient_ID == @patient & Admission_ID == @HospitalAdmission" ) original_text2 = original_text['Original_Text'].values runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300) reference_text = original_text['Reference_text'].values def run_model(input_text): if model == "BertSummarizer": output = original_text['BertSummarizer'].values st.write('Summary') st.success(output[0]) elif model == "BertGPT2": output = original_text['BertGPT2'].values st.write('Summary') st.success(output[0]) elif model == "t5seq2eq": output = original_text['t5seq2eq'].values st.write('Summary') st.success(output) elif model == "t5": output = original_text['t5'].values st.write('Summary') st.success(output) elif model == "gensim": output = original_text['gensim'].values st.write('Summary') st.success(output) elif model == "pysummarizer": output = original_text['pysummarizer'].values st.write('Summary') st.success(output) col1, col2 = st.columns([1,1]) with col1: st.button('Summarize') run_model(runtext) sentences=runtext.split('.') st.text_area('Reference text', str(reference_text))#,label_visibility="hidden") with col2: st.button('NER') doc = nlp(str(original_text2)) colors = { "DISEASE": "pink","CHEMICAL": "orange"} options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors} ent_html = displacy.render(doc, style="ent", options=options) st.markdown(ent_html, unsafe_allow_html=True)