import streamlit as st import pandas as pd import numpy as np from math import ceil from collections import Counter from string import punctuation import spacy from spacy import displacy from spacy.lang.en import English import en_ner_bc5cdr_md from streamlit.components.v1 import html # Store the initial value of widgets in session state if "visibility" not in st.session_state: st.session_state.visibility = "visible" st.session_state.disabled = False #nlp = en_core_web_lg.load() nlp = spacy.load("en_ner_bc5cdr_md") st.set_page_config(page_title ='Clinical Note Summarization', #page_icon= "Notes", layout='wide') st.title('Clinical Note Summarization') st.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.markdown('Using transformer model') ## Loading in dataset #df = pd.read_csv('mtsamples_small.csv',index_col=0) df = pd.read_csv('shpi_w_rouge21Nov.csv') df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) #Renaming column df.rename(columns={'SUBJECT_ID':'Patient_ID', 'HADM_ID':'Admission_ID', 'hpi_input_text':'Original_Text', 'hpi_reference_summary':'Reference_text'}, inplace = True) #data.rename(columns={'gdp':'log(gdp)'}, inplace=True) #Filter selection st.sidebar.header("Search for Patient:") patientid = df['Patient_ID'] patient = st.sidebar.selectbox('Select Patient ID:', patientid) admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] HospitalAdmission = st.sidebar.selectbox('', admissionid) # List of Model available model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer')) col3,col4 = st.columns(2) patientid = col3.write(f"Patient ID: {patient} ") admissionid =col4.write(f"Admission ID: {HospitalAdmission} ") runtext = '' inputNote ='Input note here:' # Query out relevant Clinical notes original_text = df.query( "Patient_ID == @patient & Admission_ID == @HospitalAdmission" ) original_text2 = original_text['Original_Text'].values reference_text = original_text['Reference_text'].values ##========= Buttons to the 4 tabs ======== col1, col2, col3, col4 = st.columns(4) with col1: if st.button("🏥 Admission"): #nav_page('Admission') inputNote = "Input Admission Note" with col2: if st.button('📆Daily Narrative'): #nav_page('Daily Narrative') inputNote = "Input Daily Narrative Note" with col3: if st.button('🗒️Discharge Plan'): #nav_page('Discharge Plan') inputNote = "Input Discharge Plan" with col4: if st.button('📝Social Notes'): #nav_page('Social Notes') inputNote = "Input Social Note" runtext =st.text_area(inputNote, str(original_text2), height=300) # Extract words associated with each entity def genEntities(ann, entity): # entity colour dict #ent_col = {'DISEASE':'#B42D1B', 'CHEMICAL':'#F06292'} ent_col = {'DISEASE':'pink', 'CHEMICAL':'orange'} # separate into the different entities entities = trans_df['Class'].unique() if entity in entities: ent = list(trans_df[trans_df['Class']==entity]['Entity'].unique()) entlist = ",".join(ent) st.markdown(f'
{entlist}
', unsafe_allow_html=True) #for i in ent: #st.markdown(f'{i}
', unsafe_allow_html=True) def visualize (run_text,output): text ='' splitruntext = [x for x in runtext.split('.')] splitoutput = [x for x in output.split('.')] # best_sentences = [] # for sentence in output: # best_sentences.append(str(sentence)) # text = '' # #display(HTML(f'