import streamlit as st import pandas as pd import numpy as np from math import ceil from collections import Counter from string import punctuation import spacy from spacy import displacy import en_ner_bc5cdr_md from streamlit.components.v1 import html def nav_page(page_name, timeout_secs=8): nav_script = """ """ % (page_name, timeout_secs) html(nav_script) # Store the initial value of widgets in session state if "visibility" not in st.session_state: st.session_state.visibility = "visible" st.session_state.disabled = False #nlp = en_core_web_lg.load() nlp = spacy.load("en_ner_bc5cdr_md") st.set_page_config(page_title ='Clinical Note Summarization', #page_icon= "Notes", layout='wide') st.title('Clinical Note Summarization') st.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.markdown('Using transformer model') ## Loading in dataset #df = pd.read_csv('mtsamples_small.csv',index_col=0) df = pd.read_csv('shpi_w_rouge21Nov.csv') df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) #Renaming column df.rename(columns={'SUBJECT_ID':'Patient_ID', 'HADM_ID':'Admission_ID', 'hpi_input_text':'Original_Text', 'hpi_reference_summary':'Reference_text'}, inplace = True) #data.rename(columns={'gdp':'log(gdp)'}, inplace=True) #Filter selection st.sidebar.header("Search for Patient:") patientid = df['Patient_ID'] patient = st.sidebar.selectbox('Select Patient ID:', patientid) admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] HospitalAdmission = st.sidebar.selectbox('', admissionid) # List of Model available model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer')) col3,col4 = st.columns(2) patientid = col3.write(f"Patient ID: {patient} ") admissionid =col4.write(f"Admission ID: {HospitalAdmission} ") runtext = '' inputNote ='Input note here:' # Query out relevant Clinical notes original_text = df.query( "Patient_ID == @patient & Admission_ID == @HospitalAdmission" ) original_text2 = original_text['Original_Text'].values reference_text = original_text['Reference_text'].values ##========= Buttons to the 4 tabs ======== col1, col2, col3, col4 = st.columns(4) with col1: if st.button("🏥 Admission"): #nav_page('Admission') inputNote = "Input Admission Note" with col2: if st.button('📆Daily Narrative'): #nav_page('Daily Narrative') inputNote = "Input Daily Narrative Note" with col3: if st.button('🗒️Discharge Plan'): #nav_page('Discharge Plan') inputNote = "Input Discharge Plan" with col4: if st.button('📝Social Notes'): #nav_page('Social Notes') inputNote = "Input Social Note" runtext =st.text_area(inputNote, str(original_text2), height=300) def visualize (run_text,output): text ='' import spacy from spacy.lang.en import English # updated nlp=spacy.load('en_core_web_sm') sentences=run_text.split('.') summary=output.split('.') text = '' display(HTML(f'

Summary - {title}

')) for sentence in sentence_list: if sentence in best_sentences: text += ' ' + str(sentence).replace(sentence, f"{sentence}") else: text += ' ' + sentence display(HTML(f""" {text} """)) best_sentences = [] for sentence in summary: best_sentences.append(str(sentence)) def run_model(input_text): if model == "BertSummarizer": output = original_text['BertSummarizer'].values st.write('Summary') st.success(output[0]) elif model == "BertGPT2": output = original_text['BertGPT2'].values st.write('Summary') st.success(output[0]) elif model == "t5seq2eq": output = original_text['t5seq2eq'].values st.write('Summary') st.success(output) elif model == "t5": output = original_text['t5'].values st.write('Summary') st.success(output) elif model == "gensim": output = original_text['gensim'].values st.write('Summary') st.success(output) elif model == "pysummarizer": output = original_text['pysummarizer'].values st.write('Summary') st.success(output) return output col1, col2 = st.columns([1,1]) with col1: st.button('Summarize') run_model(runtext) sentences=runtext.split('.') st.text_area('Reference text', str(reference_text))#,label_visibility="hidden") with col2: st.button('NER') doc = nlp(str(original_text2)) colors = { "DISEASE": "pink","CHEMICAL": "orange"} options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors} ent_html = displacy.render(doc, style="ent", options=options) st.markdown(ent_html, unsafe_allow_html=True) col3, col4 = st.columns(2) with col3: st.text_area(visualize (runtext,output)) with col4: st.text_area('testing', str(reference_text))#,label_visibility="hidden")