import streamlit as st import pandas as pd import numpy as np from math import ceil from collections import Counter from string import punctuation import spacy from spacy import displacy import en_ner_bc5cdr_md nlp = spacy.load("en_ner_bc5cdr_md") #nlp = en_core_web_lg.load() st.set_page_config(layout='wide') st.title('Clinical Note Summarization') st.sidebar.markdown('Using transformer model') ## Loading in dataset #df = pd.read_csv('mtsamples_small.csv',index_col=0) df = pd.read_csv('shpi_w_rouge21Nov.csv') df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) #Renaming column df.rename(columns={'SUBJECT_ID':'Patient_ID', 'HADM_ID':'Admission_ID', 'hpi_input_text':'Original_Text', 'hpi_reference_summary':'Reference_text'}, inplace = True) #data.rename(columns={'gdp':'log(gdp)'}, inplace=True) #Filter selection st.sidebar.header("Search for Patient:") patientid = df['Patient_ID'] patient = st.sidebar.selectbox('Select Patient ID:', patientid) admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] HospitalAdmission = st.sidebar.selectbox('', admissionid) # List of Model available model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer')) col3,col4 = st.columns(2) patientid = col3.write(f"Patient ID: {patient} ") admissionid =col4.write(f"Admission ID: {HospitalAdmission} ") #text = st.text_area('Input Clinical Note here') # Query out relevant Clinical notes original_text = df.query( "Patient_ID == @patient & Admission_ID == @HospitalAdmission" ) original_text2 = original_text['Original_Text'].values runtext =st.text_area('Input Clinical Note here:', str(original_text2), height=300) reference_text = original_text['Reference_text'].values def run_model(input_text): if model == "BertSummarizer": output = original_text['BertSummarizer'].values st.write('Summary') st.success(output[0]) elif model == "BertGPT2": output = original_text['BertGPT2'].values st.write('Summary') st.success(output[0]) elif model == "t5seq2eq": output = original_text['t5seq2eq'].values st.write('Summary') st.success(output) elif model == "t5": output = original_text['t5'].values st.write('Summary') st.success(output) elif model == "gensim": output = original_text['gensim'].values st.write('Summary') st.success(output) elif model == "pysummarizer": output = original_text['pysummarizer'].values st.write('Summary') st.success(output) if st.button('Summarize'): run_model(runtext) sentences=runtext.split('.') st.text_area('Reference text', str(reference_text)) if st.button('NER'): doc = nlp(str(original_text2)) colors = { "DISEASE": "pink","CHEMICAL": "orange"} options = {"ents": [ "DISEASE", "CHEMICAL"],"colors": colors} ent_html = displacy.render(doc, style="ent", options=options) st.markdown(ent_html, unsafe_allow_html=True)