import streamlit as st import streamlit.components as components from annotated_text import annotated_text, annotation from htbuilder import h3 import pandas as pd import numpy as np from math import ceil from collections import Counter from string import punctuation import spacy from negspacy.negation import Negex from spacy import displacy from spacy.lang.en import English from spacy.matcher import PhraseMatcher from spacy.tokens import Span #import en_ner_bc5cdr_md import re from streamlit.components.v1 import html import pickle from functools import reduce import operator import itertools from itertools import chain from collections import Counter from collections import OrderedDict ### ========== Loading Dataset ========== ## ======== Loading dataset ======== ## Loading in Admission Dataset ## df = Admission ## df2 = Admission Chief Complaint and Diagnosis ## df3 = Discharge History ## df4 = Daily Narrative # #================================= nlp = spacy.load("en_ner_bc5cdr_md") df = pd.read_csv('shpi25nov.csv') df.sort_values(by='SUBJECT_ID',ascending = True, inplace=True) df2 = pd.read_csv('cohort_cc_adm_diag.csv') df3 = pd.read_csv('cohort_past_history_12072022.csv') df3.sort_values(by='CHARTDATE',ascending = False, inplace=True) df4 = pd.read_csv('24houreventsFulltextwdifference.csv') #df4.sort_values(by=['hadmid','DATETIME'],ascending = True, inplace=True) # Loading in Daily Narrative - refreshed full 24 hr text df5 = pd.read_csv('24hourevents10Jan.csv') df5.sort_values(by=['hadmid','DATETIME'],ascending = True, inplace=True) #Append the updated 24 hr text and changes column df5.rename(columns={'hadmid':'HADM_ID', 'DATETIME':'STORETIME'}, inplace = True) df4 = pd.merge(df4[['HADM_ID','DESCRIPTION','SUBJECT_ID','CHARTTIME','STORETIME','CGID','TEXT','checks','_24_Hour_Events','Full_24_Hour_Events']],df5[['HADM_ID','STORETIME','full_24 Hour Events:','24 Hour Events:']], on = ['HADM_ID','STORETIME'], how = 'left') hr24event_pattern = re.compile('((24 Hour Events):\\n(?s).*?Allergies:)') #there are some records with full_24 Hour Events: null, hence replaced these text with the extracted text from the progress note df4['hr24event_extracted'] = '' for (idx, row) in df4.iterrows(): try: text = df4['TEXT'][idx] df4['hr24event_extracted'][idx] = re.findall(hr24event_pattern,text) df4['hr24event_extracted'][idx] = [x for x in chain.from_iterable(df4['hr24event_extracted'][idx])] except: df4['hr24event_extracted'][idx] = '' df4 = df4.reset_index(drop=True) df4['hr24event_extracted'] = df4['hr24event_extracted'].apply(' '.join) df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\s+[a-z]+:\\n', ' ') df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('24 Hour Events:|24 Hour Events|Allergies:', '') df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\s+', ' ') df4['hr24event_extracted'] = df4['hr24event_extracted'].str.replace('\.\s+\.', '.') df4['hr24event_extracted'] = df4['hr24event_extracted'].replace(r"^ +| +$", r"", regex=True) df4.loc[df4['full_24 Hour Events:'].isnull(),'full_24 Hour Events:'] = df4['hr24event_extracted'] df4.loc[df4['24 Hour Events:'].isnull(),'24 Hour Events:'] = df4['_24_Hour_Events'] # combining both data into one df = pd.merge(df, df2, on=['HADM_ID','SUBJECT_ID']) # Deleting admission chief complaint and diagnosis after combining del df2 # Remove decimal point from Admission ID and format words df['HADM_ID'] = df['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) df3['HADM_ID'] = df3['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) df4['HADM_ID'] = df4['HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) df3['INDEX_HADM_ID'] = df3['INDEX_HADM_ID'].astype(str).apply(lambda x: x.replace('.0','')) df3["CHARTDATE_HADM_ID"] = df3["CHARTDATE"].astype(str) +' ('+ df3["HADM_ID"] +')' df3["DIAGNOSIS"] = df3["DIAGNOSIS"].str.capitalize() df3["DISCHARGE_LOCATION"] = df3["DISCHARGE_LOCATION"].str.capitalize() df3["TEXT"] =df3["TEXT"].replace(r'\n',' \n ', regex=True) df3["TEXT"] =df3["TEXT"].replace(r'#',' ', regex=True) df3["BertSummarizer"] =df3["BertSummarizer"].replace(r'#',' ', regex=True) #Renaming column df.rename(columns={'SUBJECT_ID':'Patient_ID', 'HADM_ID':'Admission_ID', 'hpi_input_text':'Original_Text', 'hpi_reference_summary':'Reference_text'}, inplace = True) df3.rename(columns={'SUBJECT_ID':'Patient_ID', 'HADM_ID':'PAST_Admission_ID', 'INDEX_HADM_ID':'Admission_ID'}, inplace = True) df4.rename(columns={'HADM_ID':'Admission_ID', 'full_24 Hour Events:':'Full Text', '24 Hour Events:':'Change_Note', 'past_24 Hour Events:':'Past_Change_Note'}, inplace = True) df4["Full Text"] =df4["Full Text"].replace('["[','').replace(']"]','') ## ========== Setting up Streamlit Sidebar ========== st.set_page_config(page_title ='Patient Inpatient Progression Dashboard', #page_icon= "Notes", layout='wide') st.title('Patient Inpatient Progression Dashboard') st.markdown( """ """, unsafe_allow_html=True, ) st.sidebar.markdown('Using transformer model') #Filter selection st.sidebar.header("Search for Patient:") # ===== Initial filter for patient and admission id ===== patientid = df['Patient_ID'].unique() patient = st.sidebar.selectbox('Select Patient ID:', patientid) #Filter Patient admissionid = df['Admission_ID'].loc[df['Patient_ID'] == patient] #Filter available Admission id for patient HospitalAdmission = st.sidebar.selectbox(' ', admissionid) pastHistoryEpDate = df3['CHARTDATE_HADM_ID'].loc[(df3['Patient_ID'] == patient) & (df3['Admission_ID']== HospitalAdmission)] countOfAdmission = len(pastHistoryEpDate) # List of Model available #model = st.sidebar.selectbox('Select Model', ('BertSummarizer','BertGPT2','t5seq2eq','t5','gensim','pysummarizer')) model = 'BertSummarizer' st.sidebar.markdown('Model: ' + model) original_text = df.query( "Patient_ID == @patient & Admission_ID == @HospitalAdmission" ) original_text2 = original_text['Original_Text'].values AdmissionChiefCom = original_text['Admission_Chief_Complaint'].values diagnosis =original_text['DIAGNOSIS'].values reference_text = original_text['Reference_text'].values dailyNoteChange =df4[['STORETIME','Change_Note','Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()] dailyNoteFull =df4[['STORETIME','Change_Note','Full Text']].loc[(df4['Admission_ID']==HospitalAdmission) & df4['_24_Hour_Events'].notnull()] dailyNoteChange.rename(columns={'STORETIME':'Time of Record', 'Change_Note':'Note Changes'}, inplace = True) #dailyNoteChange['Time of Record'] = pd.to_datetime(dailyNoteChange['Time of Record']) dailyNoteChange['TimeDiff'] = pd.to_datetime(dailyNoteChange["Time of Record"], format='%Y/%m/%d %H:%M') #dailyNoteChange['TimeDiff'] = pd.to_datetime(dailyNoteChange["Time of Record"], format='%d/%m/%Y %H:%M') dailyNoteChange['TimeDiff'] = dailyNoteChange['TimeDiff'] -dailyNoteChange['TimeDiff'].shift() dailyNoteChange['TimeDiff'] = dailyNoteChange['TimeDiff'].fillna(pd.Timedelta(seconds=0)) dailyNoteChange['TimeDiff']= dailyNoteChange['TimeDiff'].dt.total_seconds().div(60).astype(int) dailyNoteChange['Hour'] = dailyNoteChange['TimeDiff'] // 60 dailyNoteChange['Mins'] = dailyNoteChange['TimeDiff']- dailyNoteChange['Hour'] * 60 dailyNoteChange["TimeDiff"] = dailyNoteChange['Hour'].astype(str) + " hours " + dailyNoteChange['Mins'].astype(str) + " Mins" del dailyNoteChange['Hour'] del dailyNoteChange['Mins'] dailyNoteChange["PreviousRecord"] = dailyNoteChange["Time of Record"].shift() dailyNoteChange.sort_values(by=['Time of Record'],ascending = False, inplace=True) dailyNoteFull.rename(columns={'STORETIME':'Time of Record', 'Change_Note':'Note Changes'}, inplace = True) dailyNote = df4['Full Text'].loc[(df4['Admission_ID']==HospitalAdmission)] dailyNote = dailyNote.unique() try: mindate = min(dailyNoteFull['Time of Record']) except: mindate = '' # ===== to display selected patient and admission id on main page col3,col4 = st.columns(2) patientid = col3.write(f"Patient ID: {patient} ") admissionid =col4.write(f"Admission ID: {HospitalAdmission} ") ##========= Buttons to the 3 tabs ======== Temp disabled Discharge Plan and Social Notes col1, col2, col3 = st.columns([1,1,1]) #col6, col7 =st.columns([2,2]) with st.container(): with col1: btnAdmission = st.button("๐ฅ Admission") with col2: btnDailyNarrative = st.button('๐Daily Narrative') with col3: btnPastHistory = st.button('๐Past History (6 Mths)') ##======================== Start of NER Tagging ======================== #lemmatizing the notes to capture all forms of negation(e.g., deny: denies, denying) def lemmatize(note, nlp): doc = nlp(note) lemNote = [wd.lemma_ for wd in doc] return " ".join(lemNote) #function to modify options for displacy NER visualization def get_entity_options(): entities = ["DISEASE", "CHEMICAL", "NEG_ENTITY"] colors = {'DISEASE': 'pink', 'CHEMICAL': 'orange', "NEG_ENTITY":'white'} options = {"ents": entities, "colors": colors} return options #adding a new pipeline component to identify negation def neg_model(): nlp.add_pipe('sentencizer') nlp.add_pipe( "negex", config={ "chunk_prefix": ["no"], }, last=True) return nlp def negation_handling(note, neg_model): results = [] nlp = neg_model() note = note.split(".") #sentence tokenizing based on delimeter note = [n.strip() for n in note] #removing extra spaces at the begining and end of sentence for t in note: doc = nlp(t) for e in doc.ents: rs = str(e._.negex) if rs == "True": results.append(e.text) return results #function to identify span objects of matched negative phrases from text def match(nlp,terms,label): patterns = [nlp.make_doc(text) for text in terms] matcher = PhraseMatcher(nlp.vocab) matcher.add(label, None, *patterns) return matcher #replacing the labels for identified negative entities def overwrite_ent_lbl(matcher, doc): matches = matcher(doc) seen_tokens = set() new_entities = [] entities = doc.ents for match_id, start, end in matches: if start not in seen_tokens and end - 1 not in seen_tokens: new_entities.append(Span(doc, start, end, label=match_id)) entities = [e for e in entities if not (e.start < end and e.end > start)] seen_tokens.update(range(start, end)) doc.ents = tuple(entities) + tuple(new_entities) return doc #deduplicate repeated entities def dedupe(items): seen = set() for item in items: item = str(item).strip() if item not in seen: yield item seen.add(item) ##======================== End of NER Tagging ======================== def run_model(input_text): if model == "BertSummarizer": output = original_text['BertSummarizer2s'].values st.write('Summary') elif model == "BertGPT2": output = original_text['BertGPT2'].values st.write('Summary') elif model == "t5seq2eq": output = original_text['t5seq2eq'].values st.write('Summary') elif model == "t5": output = original_text['t5'].values st.write('Summary') elif model == "gensim": output = original_text['gensim'].values st.write('Summary') elif model == "pysummarizer": output = original_text['pysummarizer'].values st.write('Summary') st.success(output) def Admission(): with st.container(): runtext =st.text_area('History of presenting illnesses at admission', str(original_text2)[1:-1], height=300) lem_clinical_note= lemmatize(runtext, nlp) #creating a doc object using BC5CDR model doc = nlp(lem_clinical_note) options = get_entity_options() #list of negative concepts from clinical note identified by negspacy results0 = negation_handling(lem_clinical_note, neg_model) matcher = match(nlp, results0,"NEG_ENTITY") #doc0: new doc object with added "NEG_ENTITY label" doc0 = overwrite_ent_lbl(matcher,doc) #visualizing identified Named Entities in clinical input text ent_html = displacy.render(doc0, style='ent', options=options) col1, col2 = st.columns([1,1]) with st.container(): with col1: st.button('Summarize') run_model(runtext) with col2: st.button('NER') # ===== Adding the Disease/Chemical into a list ===== problem_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'DISEASE'])) medication_entities = list(dedupe([t for t in doc0.ents if t.label_ == 'CHEMICAL'])) st.markdown('**CHIEF COMPLAINT:**') st.write(str(AdmissionChiefCom)[1:-1]) st.markdown('**ADMISSION DIAGNOSIS:**') st.markdown(str(diagnosis)[1:-1].capitalize()) st.markdown('**PROBLEM/ISSUE**') #st.markdown(problem_entities) st.markdown(f'
{str(problem_entities)[1:-1]}
', unsafe_allow_html=True) #genEntities(trans_df, 'DISEASE') st.markdown('**MEDICATION**') st.markdown(f'{str(medication_entities)[1:-1]}
', unsafe_allow_html=True) #genEntities(trans_df, 'CHEMICAL') #st.table(trans_df) st.markdown('**NER**') with st.expander("See NER Details"): st.markdown(ent_html, unsafe_allow_html=True) alphabets= "([A-Za-z])" prefixes = "(mr|st|mrs|ms|dr)[.]" suffixes = "(inc|ltd|jr|sr|co)" starters = "(mr|mrs|ms|dr|he\s|she\s|it\s|they\s|their\s|our\s|we\s|but\s|however\s|that\s|this\s|wherever)" acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)" websites = "[.](com|net|org|io|gov)" digits = "([0-9])" def split_into_sentences(text): # text = str(text) text = " " + text + " " text = text.replace("\n"," ") # text = text.replace("[0-9]{4}-[0-9]{1,2}-[0-9]{1,2} [0-9]{2}:[0-9]{2}:[0-9]{2}"," ") text = re.sub(prefixes,"\\1Summary:
', unsafe_allow_html=True) if model == "BertSummarizer": if historyAdmission.shape[0] == 0: st.markdown('NA') else: st.markdown(str(historyAdmission['BertSummarizer'].values[0])) elif model == "t5seq2eq": if historyAdmission.shape[0] == 0: st.markdown('NA') else: st.markdown(str(historyAdmission['t5seq2eq'].values[0])) st.markdown(f'Diagnosis:
', unsafe_allow_html=True) if historyAdmission.shape[0] == 0: st.markdown('NA') else: st.markdown(str(historyAdmission['Diagnosis_Description'].values[0])) st.markdown('**PROBLEM/ISSUE**') st.markdown(f'{str(problem_entities)[1:-1]}
', unsafe_allow_html=True) st.markdown('**MEDICATION**') st.markdown(f'{str(medication_entities)[1:-1]}
', unsafe_allow_html=True) st.markdown('Discharge Disposition: ' + str(historyAdmission['DISCHARGE_LOCATION'].values[0])) with st.expander('Full Discharge Summary'): #st.write("line 1 \n line 2 \n line 3") fulldischargesummary = historyAdmission['TEXT'].values[0] st.write(fulldischargesummary) if "load_state" not in st.session_state: st.session_state.load_state = False if "admission_button_clicked" not in st.session_state: st.session_state.admission_button_clicked = False if "daily_button_clicked" not in st.session_state: st.session_state.daily_button_clicked = False if "past_button_clicked" not in st.session_state: st.session_state.past_button_clicked = False if btnAdmission or st.session_state["admission_button_clicked"]: st.session_state["admission_button_clicked"] = True st.session_state["daily_button_clicked"] = False st.session_state["past_button_clicked"] = False Admission() if btnDailyNarrative or st.session_state["daily_button_clicked"]: st.session_state["daily_button_clicked"] = True st.session_state["admission_button_clicked"] = False st.session_state["past_button_clicked"] = False DailyNarrative() if btnPastHistory or st.session_state["past_button_clicked"]: st.session_state["past_button_clicked"] = True st.session_state["daily_button_clicked"] = False st.session_state["admission_button_clicked"] = False PastHistory()