File size: 1,445 Bytes
9490409
c32023c
1ab4c61
 
 
c32023c
338bbe8
9490409
 
 
310a233
bfc39e7
 
 
1ab4c61
 
 
 
 
9490409
 
c32023c
9490409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fccfd79
c32023c
60e550e
3bcac80
 
 
 
d38f6d4
3bcac80
60e550e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from fastapi import FastAPI, UploadFile
from PIL import Image
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from pathlib import Path
import mnist_classifier
import torch
from pathlib import Path
import datetime
import numpy as np
from pydantic import BaseModel

app = FastAPI()

app.mount("/static", StaticFiles(directory=Path("static")), name="static")
@app.get("/")
async def root():
    return FileResponse("static/index.html")

upload_dir = Path("uploads")
upload_dir.mkdir(parents=True, exist_ok=True)

def process_image(file):
    image = Image.open(file.file)
    image = image.resize((28, 28))  # Resize to MNIST image size
    image = image.convert("L")  # Convert to grayscale
    raw_image = image
    image = np.array(image)
    image = image / 255.0  # Normalize pixel values
    return torch.from_numpy(image).float().reshape(1, 28, 28), raw_image
    
def store_img(image):
    timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    unique_filename = f"{timestamp}.png"
    output_path = upload_dir / unique_filename
    image.save(output_path)
    
@app.post("/predict")
async def predict(image: UploadFile):
    return {'msg': 'ok'}
    print(image)
    # tensor_image, raw_image = process_image(image)
    # print(tensor_image.shape)
    # prediction = mnist_classifier.predict(tensor_image)
    # store_img(raw_image)
    prediction = []
    return {"prediction": prediction}