Spaces:
Runtime error
Runtime error
File size: 27,868 Bytes
a1ece17 5fe67f2 a1ece17 5fe67f2 a1ece17 d64050c 55abd01 a1ece17 55abd01 0bbec58 55abd01 0bbec58 5993d2f 0bbec58 55abd01 0bbec58 55abd01 0bbec58 55abd01 0bbec58 55abd01 0bbec58 55abd01 0bbec58 55abd01 5993d2f 55abd01 5993d2f 55abd01 5993d2f 55abd01 5993d2f 55abd01 5993d2f 55abd01 5993d2f 55abd01 5993d2f 55abd01 5993d2f 55abd01 5993d2f 55abd01 0bbec58 5993d2f 0bbec58 55abd01 5993d2f 55abd01 5993d2f 55abd01 5993d2f 53075d2 c004d97 55abd01 5993d2f 55abd01 0bbec58 53075d2 48f5984 0bbec58 48f5984 0bbec58 d9abc97 53075d2 0bbec58 d9abc97 0bbec58 53075d2 0bbec58 55abd01 48f5984 5fe67f2 53075d2 5fe67f2 48f5984 0bbec58 48f5984 0bbec58 68c23a6 0bbec58 68c23a6 0bbec58 68c23a6 0bbec58 68c23a6 0bbec58 48f5984 68c23a6 5fe67f2 68c23a6 5fe67f2 0bbec58 68c23a6 a1ece17 48f5984 a1ece17 d64050c a1ece17 d64050c a1ece17 d64050c 5fe67f2 a1ece17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"from torch import nn\n",
"import torch.nn.functional as F\n",
"from datasets import load_dataset\n",
"import fastcore.all as fc\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib as mpl\n",
"import torchvision.transforms.functional as TF\n",
"from torch.utils.data import default_collate, DataLoader\n",
"import torch.optim as optim\n",
"import pickle\n",
"%matplotlib inline\n",
"plt.rcParams['figure.figsize'] = [2, 2]"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Found cached dataset mnist (/Users/arun/.cache/huggingface/datasets/mnist/mnist/1.0.0/9d494b7f466d6931c64fb39d58bb1249a4d85c9eb9865d9bc20960b999e2a332)\n",
"100%|██████████| 2/2 [00:00<00:00, 69.76it/s]\n"
]
}
],
"source": [
"dataset_nm = 'mnist'\n",
"x,y = 'image', 'label'\n",
"ds = load_dataset(dataset_nm)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAI4AAACOCAYAAADn/TAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAIsUlEQVR4nO3df2yU9R0H8PfHtrQroFJBVrGjHVRAweHWCASCJBuumiXOLAyYWTbjQiYy58Y2fmzZ5oILJgsJMjSRrCsmig7mAjFsZBIlLkNGdeBgrOWnWqnFwkDmUNrrZ3/0bPu59cfTz3P33NPr+5WQu89zd32+MW+/z/eeu+dzoqogGqgrsj0AGpwYHHJhcMiFwSEXBodcGBxyCRUcEakWkXoROSYiK9M1KIo/8Z7HEZE8AA0A5gNoBLAfwGJV/Wf6hkdxlR/itbcCOKaqJwBARJ4FcBeAXoMzTAq1CMND7JKidhH/blHVManbwwRnHIC3u9WNAGb09YIiDMcM+XyIXVLUXtRtb/a0PUxwpIdt/3fcE5ElAJYAQBGKQ+yO4iTM4rgRQFm3+noAp1OfpKpPqmqVqlYVoDDE7ihOwgRnP4BKEakQkWEAFgHYkZ5hUdy5D1Wq2iYiywDsApAHoEZVD6dtZBRrYdY4UNWdAHamaSw0iPDMMbkwOOTC4JALg0MuDA65MDjkwuCQC4NDLgwOuTA45MLgkAuDQy6hPuQcSiTf/qfKGzM68Gvrf1Bu6kRxu6nHTzhj6uKl9jty764bZurXq54zdUviA1PP2Lq88/7E778aeJwDwRmHXBgccmFwyGXIrHHyplSaWgsLTH36tqtNfWmmXTeUXGXrVz5j1xlh/PG/I0396K+rTb1v2jOmPtl6ydRrm+eb+rpXMt/ziDMOuTA45MLgkEvOrnES8z5r6nW1G019Q4E9NxKlVk2Y+qcbvmnq/A/sGmXW1mWmHvlOm6kLW+yap7huX8gR9o8zDrkwOOTC4JBLzq5xCuvtZeyvfVhm6hsKmtO2r+VNM0194j/2c6zaCdtMfaHdrmHGPvbXUPvPRqdqzjjkwuCQC4NDLjm7xmlretfUGx5dYOpHqu1nT3lvjDD1waUb+vz7a1pu7rx/7Au2YVTifJOpvzZrqalPPWj/VgUO9rmvOOKMQy79BkdEakTkjIgc6ratRET+LCJHk7ejMjtMipsgM04tgOqUbSsB7FbVSgC7kzUNIYH6HItIOYAXVHVqsq4HME9Vm0SkFMDLqjqpv79zpZRoXLqO5o2+xtSJs+dMffKZm019eG6NqW/95Xc671+7Mdx5mDh7Ube9pqpVqdu9a5yxqtoEAMnba8MMjgafjL+rYrva3OSdcZqThygkb8/09kS2q81N3hlnB4BvAFibvN2ethFFJNFyts/HW9/v+/s6N93T9csD7z2RZx9sTyDXBXk7vgXAXgCTRKRRRO5DR2Dmi8hRdPwIyNrMDpPipt8ZR1UX9/JQPN4eUVbwzDG55OxnVWFNWdFg6nun2Qn2t+N3d96/bcED5rGRz2Xmeu044YxDLgwOuTA45MI1Ti8S5y+Y+uz9U0z91o6ua5lWrnnKPLbqq3ebWv9+lanLHtlrd+b8XdRs4oxDLgwOufBQFVD7wSOmXvTwDzvvP/2zX5nHDsy0hy7Yq2dw03B7SW/lJvtV07YTp3yDjBBnHHJhcMiFwSGXQF8dTZc4fXU0nXT2dFNfubbR1Fs+vavP109+6VumnvSwPRWQOHrCP7iQ0v3VURriGBxyYXDIhWucDMgbay/6OL1woqn3rVhv6itS/v+95+Ttpr4wp++vuWYS1ziUVgwOuTA45MLPqjIg0WwvMxv7mK0//JFtN1ss9lKcTeUvmPpLdz9kn/+HzLej7Q9nHHJhcMiFwSEXrnHSoH3OdFMfX1Bk6qnTT5k6dU2TasO5W+zzt9e5x5YpnHHIhcEhFwaHXLjGCUiqppq64cGudcqm2ZvNY3OLLg/ob3+kraZ+9VyFfUK7/U5yHHDGIZcg/XHKROQlETkiIodF5LvJ7WxZO4QFmXHaACxX1SnouNDjARG5EWxZO6QFaazUBODjDqMXReQIgHEA7gIwL/m0zQBeBrAiI6OMQH7FeFMfv/c6U/984bOm/sqIFve+Vjfbr7fsWW8vvBq1OeUS4Rga0Bon2e/4FgD7wJa1Q1rg4IjICAC/B/CQqr4/gNctEZE6EalrxUeeMVIMBQqOiBSgIzRPq+rzyc2BWtayXW1u6neNIyIC4DcAjqjqum4PDaqWtfnlnzL1hc+VmnrhL/5k6m9f/Ty8Un9qce/jdk1TUvs3U49qj/+aJlWQE4CzAXwdwD9E5EBy22p0BOZ3yfa1bwFY0PPLKRcFeVf1FwDSy8O5f8kC9YhnjsklZz6ryi/9pKnP1Qw39f0Ve0y9eGS4n49e9s6czvuvPzHdPDZ62yFTl1wcfGuY/nDGIRcGh1wYHHIZVGucy1/sOh9y+Xv2pxBXT9xp6ts/YX8eeqCaE5dMPXfHclNP/sm/Ou+XnLdrmPZQex4cOOOQC4NDLoPqUHXqy105b5i2dUCv3Xh+gqnX77GtRCRhz3FOXnPS1JXN9rLb3P8NvL5xxiEXBodcGBxyYSs36hNbuVFaMTjkwuCQC4NDLgwOuTA45MLgkAuDQy4MDrkwOOTC4JBLpJ9Vich7AN4EMBqAv09IZnFs1nhVHZO6MdLgdO5UpK6nD87igGMLhocqcmFwyCVbwXkyS/sNgmMLICtrHBr8eKgil0iDIyLVIlIvIsdEJKvtbUWkRkTOiMihbtti0bt5MPSWjiw4IpIHYCOAOwDcCGBxsl9yttQCqE7ZFpfezfHvLa2qkfwDMAvArm71KgCrotp/L2MqB3CoW10PoDR5vxRAfTbH121c2wHMj9P4ojxUjQPwdre6MbktTmLXuzmuvaWjDE5PfQT5lq4P3t7SUYgyOI0AyrrV1wM4HeH+gwjUuzkKYXpLRyHK4OwHUCkiFSIyDMAidPRKjpOPezcDWezdHKC3NJDt3tIRL/LuBNAA4DiAH2d5wbkFHT9u0oqO2fA+ANeg493K0eRtSZbGNgcdh/E3ABxI/rszLuNTVZ45Jh+eOSYXBodcGBxyYXDIhcEhFwaHXBgccmFwyOV/atVD7hyCzrEAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 144x144 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"def transform_ds(b):\n",
" b[x] = [TF.to_tensor(ele) for ele in b[x]]\n",
" return b\n",
"\n",
"dst = ds.with_transform(transform_ds)\n",
"plt.imshow(dst['train'][0]['image'].permute(1,2,0));"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(torch.Size([1024, 1, 28, 28]), torch.Size([1024]))"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"bs = 1024\n",
"class DataLoaders:\n",
" def __init__(self, train_ds, valid_ds, bs, collate_fn, **kwargs):\n",
" self.train = DataLoader(train_ds, batch_size=bs, shuffle=True, collate_fn=collate_fn, **kwargs)\n",
" self.valid = DataLoader(train_ds, batch_size=bs*2, shuffle=False, collate_fn=collate_fn, **kwargs)\n",
"\n",
"def collate_fn(b):\n",
" collate = default_collate(b)\n",
" return (collate[x], collate[y])\n",
"\n",
"dls = DataLoaders(dst['train'], dst['test'], bs=bs, collate_fn=collate_fn)\n",
"xb,yb = next(iter(dls.train))\n",
"xb.shape, yb.shape"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"class Reshape(nn.Module):\n",
" def __init__(self, dim):\n",
" super().__init__()\n",
" self.dim = dim\n",
" \n",
" def forward(self, x):\n",
" return x.reshape(self.dim)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"# model definition\n",
"def linear_classifier():\n",
" return nn.Sequential(\n",
" Reshape((-1, 784)),\n",
" nn.Linear(784, 50),\n",
" nn.ReLU(),\n",
" nn.Linear(50, 50),\n",
" nn.ReLU(),\n",
" nn.Linear(50, 10)\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"train, epoch:1, loss: 0.2640, accuracy: 0.7885\n",
"eval, epoch:1, loss: 0.3039, accuracy: 0.8994\n",
"train, epoch:2, loss: 0.2368, accuracy: 0.9182\n",
"eval, epoch:2, loss: 0.2164, accuracy: 0.9350\n",
"train, epoch:3, loss: 0.1951, accuracy: 0.9402\n",
"eval, epoch:3, loss: 0.1589, accuracy: 0.9498\n",
"train, epoch:4, loss: 0.1511, accuracy: 0.9513\n",
"eval, epoch:4, loss: 0.1388, accuracy: 0.9618\n",
"train, epoch:5, loss: 0.1182, accuracy: 0.9567\n",
"eval, epoch:5, loss: 0.1426, accuracy: 0.9621\n"
]
}
],
"source": [
"model = linear_classifier()\n",
"lr = 0.1\n",
"max_lr = 0.1\n",
"epochs = 5\n",
"opt = optim.AdamW(model.parameters(), lr=lr)\n",
"sched = optim.lr_scheduler.OneCycleLR(opt, max_lr, total_steps=len(dls.train), epochs=epochs)\n",
"\n",
"for epoch in range(epochs):\n",
" for train in (True, False):\n",
" accuracy = 0\n",
" dl = dls.train if train else dls.valid\n",
" for xb,yb in dl:\n",
" preds = model(xb)\n",
" loss = F.cross_entropy(preds, yb)\n",
" if train:\n",
" loss.backward()\n",
" opt.step()\n",
" opt.zero_grad()\n",
" with torch.no_grad():\n",
" accuracy += (preds.argmax(1).detach().cpu() == yb).float().mean()\n",
" if train:\n",
" sched.step()\n",
" accuracy /= len(dl)\n",
" print(f\"{'train' if train else 'eval'}, epoch:{epoch+1}, loss: {loss.item():.4f}, accuracy: {accuracy:.4f}\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [],
"source": [
"with open('./mlp_classifier.pkl', 'wb') as model_file:\n",
" pickle.dump(model, model_file)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"def cnn_classifier():\n",
" ks,stride = 3,2\n",
" return nn.Sequential(\n",
" nn.Conv2d(1, 8, kernel_size=ks, stride=stride, padding=ks//2),\n",
" nn.BatchNorm2d(8),\n",
" nn.ReLU(),\n",
" nn.Conv2d(8, 16, kernel_size=ks, stride=stride, padding=ks//2),\n",
" nn.BatchNorm2d(16),\n",
" nn.ReLU(),\n",
" nn.Conv2d(16, 32, kernel_size=ks, stride=stride, padding=ks//2),\n",
" nn.BatchNorm2d(32),\n",
" nn.ReLU(),\n",
" nn.Conv2d(32, 64, kernel_size=ks, stride=stride, padding=ks//2),\n",
" nn.BatchNorm2d(64),\n",
" nn.ReLU(),\n",
" nn.Conv2d(64, 64, kernel_size=ks, stride=stride, padding=ks//2),\n",
" nn.BatchNorm2d(64),\n",
" nn.ReLU(),\n",
" nn.Conv2d(64, 10, kernel_size=ks, stride=stride, padding=ks//2),\n",
" nn.Flatten(),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"def kaiming_init(m):\n",
" if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):\n",
" nn.init.kaiming_normal_(m.weight)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"train, epoch:1, loss: 0.1096, accuracy: 0.9145\n",
"eval, epoch:1, loss: 0.1383, accuracy: 0.9774\n",
"train, epoch:2, loss: 0.0487, accuracy: 0.9808\n",
"eval, epoch:2, loss: 0.0715, accuracy: 0.9867\n",
"train, epoch:3, loss: 0.0536, accuracy: 0.9840\n",
"eval, epoch:3, loss: 0.0499, accuracy: 0.9896\n",
"train, epoch:4, loss: 0.0358, accuracy: 0.9842\n",
"eval, epoch:4, loss: 0.0474, accuracy: 0.9893\n",
"train, epoch:5, loss: 0.0514, accuracy: 0.9852\n",
"eval, epoch:5, loss: 0.0579, accuracy: 0.9886\n"
]
}
],
"source": [
"model = cnn_classifier()\n",
"model.apply(kaiming_init)\n",
"lr = 0.1\n",
"max_lr = 0.3\n",
"epochs = 5\n",
"opt = optim.AdamW(model.parameters(), lr=lr)\n",
"sched = optim.lr_scheduler.OneCycleLR(opt, max_lr, total_steps=len(dls.train), epochs=epochs)\n",
"\n",
"for epoch in range(epochs):\n",
" for train in (True, False):\n",
" accuracy = 0\n",
" dl = dls.train if train else dls.valid\n",
" for xb,yb in dl:\n",
" preds = model(xb)\n",
" loss = F.cross_entropy(preds, yb)\n",
" if train:\n",
" loss.backward()\n",
" opt.step()\n",
" opt.zero_grad()\n",
" with torch.no_grad():\n",
" accuracy += (preds.argmax(1).detach().cpu() == yb).float().mean()\n",
" if train:\n",
" sched.step()\n",
" accuracy /= len(dl)\n",
" print(f\"{'train' if train else 'eval'}, epoch:{epoch+1}, loss: {loss.item():.4f}, accuracy: {accuracy:.4f}\")\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [],
"source": [
"with open('./cnn_classifier.pkl', 'wb') as model_file:\n",
" pickle.dump(model, model_file)"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": [
"exclude"
]
},
"source": [
"#### commit to .py file for deployment"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] WARNING | pattern 'mnist.ipynb' matched no files\n",
"This application is used to convert notebook files (*.ipynb)\n",
" to various other formats.\n",
"\n",
" WARNING: THE COMMANDLINE INTERFACE MAY CHANGE IN FUTURE RELEASES.\n",
"\n",
"Options\n",
"=======\n",
"The options below are convenience aliases to configurable class-options,\n",
"as listed in the \"Equivalent to\" description-line of the aliases.\n",
"To see all configurable class-options for some <cmd>, use:\n",
" <cmd> --help-all\n",
"\n",
"--debug\n",
" set log level to logging.DEBUG (maximize logging output)\n",
" Equivalent to: [--Application.log_level=10]\n",
"--show-config\n",
" Show the application's configuration (human-readable format)\n",
" Equivalent to: [--Application.show_config=True]\n",
"--show-config-json\n",
" Show the application's configuration (json format)\n",
" Equivalent to: [--Application.show_config_json=True]\n",
"--generate-config\n",
" generate default config file\n",
" Equivalent to: [--JupyterApp.generate_config=True]\n",
"-y\n",
" Answer yes to any questions instead of prompting.\n",
" Equivalent to: [--JupyterApp.answer_yes=True]\n",
"--execute\n",
" Execute the notebook prior to export.\n",
" Equivalent to: [--ExecutePreprocessor.enabled=True]\n",
"--allow-errors\n",
" Continue notebook execution even if one of the cells throws an error and include the error message in the cell output (the default behaviour is to abort conversion). This flag is only relevant if '--execute' was specified, too.\n",
" Equivalent to: [--ExecutePreprocessor.allow_errors=True]\n",
"--stdin\n",
" read a single notebook file from stdin. Write the resulting notebook with default basename 'notebook.*'\n",
" Equivalent to: [--NbConvertApp.from_stdin=True]\n",
"--stdout\n",
" Write notebook output to stdout instead of files.\n",
" Equivalent to: [--NbConvertApp.writer_class=StdoutWriter]\n",
"--inplace\n",
" Run nbconvert in place, overwriting the existing notebook (only\n",
" relevant when converting to notebook format)\n",
" Equivalent to: [--NbConvertApp.use_output_suffix=False --NbConvertApp.export_format=notebook --FilesWriter.build_directory=]\n",
"--clear-output\n",
" Clear output of current file and save in place,\n",
" overwriting the existing notebook.\n",
" Equivalent to: [--NbConvertApp.use_output_suffix=False --NbConvertApp.export_format=notebook --FilesWriter.build_directory= --ClearOutputPreprocessor.enabled=True]\n",
"--no-prompt\n",
" Exclude input and output prompts from converted document.\n",
" Equivalent to: [--TemplateExporter.exclude_input_prompt=True --TemplateExporter.exclude_output_prompt=True]\n",
"--no-input\n",
" Exclude input cells and output prompts from converted document.\n",
" This mode is ideal for generating code-free reports.\n",
" Equivalent to: [--TemplateExporter.exclude_output_prompt=True --TemplateExporter.exclude_input=True --TemplateExporter.exclude_input_prompt=True]\n",
"--allow-chromium-download\n",
" Whether to allow downloading chromium if no suitable version is found on the system.\n",
" Equivalent to: [--WebPDFExporter.allow_chromium_download=True]\n",
"--disable-chromium-sandbox\n",
" Disable chromium security sandbox when converting to PDF..\n",
" Equivalent to: [--WebPDFExporter.disable_sandbox=True]\n",
"--show-input\n",
" Shows code input. This flag is only useful for dejavu users.\n",
" Equivalent to: [--TemplateExporter.exclude_input=False]\n",
"--embed-images\n",
" Embed the images as base64 dataurls in the output. This flag is only useful for the HTML/WebPDF/Slides exports.\n",
" Equivalent to: [--HTMLExporter.embed_images=True]\n",
"--sanitize-html\n",
" Whether the HTML in Markdown cells and cell outputs should be sanitized..\n",
" Equivalent to: [--HTMLExporter.sanitize_html=True]\n",
"--log-level=<Enum>\n",
" Set the log level by value or name.\n",
" Choices: any of [0, 10, 20, 30, 40, 50, 'DEBUG', 'INFO', 'WARN', 'ERROR', 'CRITICAL']\n",
" Default: 30\n",
" Equivalent to: [--Application.log_level]\n",
"--config=<Unicode>\n",
" Full path of a config file.\n",
" Default: ''\n",
" Equivalent to: [--JupyterApp.config_file]\n",
"--to=<Unicode>\n",
" The export format to be used, either one of the built-in formats\n",
" ['asciidoc', 'custom', 'html', 'latex', 'markdown', 'notebook', 'pdf', 'python', 'qtpdf', 'qtpng', 'rst', 'script', 'slides', 'webpdf']\n",
" or a dotted object name that represents the import path for an\n",
" ``Exporter`` class\n",
" Default: ''\n",
" Equivalent to: [--NbConvertApp.export_format]\n",
"--template=<Unicode>\n",
" Name of the template to use\n",
" Default: ''\n",
" Equivalent to: [--TemplateExporter.template_name]\n",
"--template-file=<Unicode>\n",
" Name of the template file to use\n",
" Default: None\n",
" Equivalent to: [--TemplateExporter.template_file]\n",
"--theme=<Unicode>\n",
" Template specific theme(e.g. the name of a JupyterLab CSS theme distributed\n",
" as prebuilt extension for the lab template)\n",
" Default: 'light'\n",
" Equivalent to: [--HTMLExporter.theme]\n",
"--sanitize_html=<Bool>\n",
" Whether the HTML in Markdown cells and cell outputs should be sanitized.This\n",
" should be set to True by nbviewer or similar tools.\n",
" Default: False\n",
" Equivalent to: [--HTMLExporter.sanitize_html]\n",
"--writer=<DottedObjectName>\n",
" Writer class used to write the\n",
" results of the conversion\n",
" Default: 'FilesWriter'\n",
" Equivalent to: [--NbConvertApp.writer_class]\n",
"--post=<DottedOrNone>\n",
" PostProcessor class used to write the\n",
" results of the conversion\n",
" Default: ''\n",
" Equivalent to: [--NbConvertApp.postprocessor_class]\n",
"--output=<Unicode>\n",
" Overwrite base name use for output files.\n",
" Supports pattern replacements '{notebook_name}'.\n",
" Default: '{notebook_name}'\n",
" Equivalent to: [--NbConvertApp.output_base]\n",
"--output-dir=<Unicode>\n",
" Directory to write output(s) to. Defaults\n",
" to output to the directory of each notebook. To recover\n",
" previous default behaviour (outputting to the current\n",
" working directory) use . as the flag value.\n",
" Default: ''\n",
" Equivalent to: [--FilesWriter.build_directory]\n",
"--reveal-prefix=<Unicode>\n",
" The URL prefix for reveal.js (version 3.x).\n",
" This defaults to the reveal CDN, but can be any url pointing to a copy\n",
" of reveal.js.\n",
" For speaker notes to work, this must be a relative path to a local\n",
" copy of reveal.js: e.g., \"reveal.js\".\n",
" If a relative path is given, it must be a subdirectory of the\n",
" current directory (from which the server is run).\n",
" See the usage documentation\n",
" (https://nbconvert.readthedocs.io/en/latest/usage.html#reveal-js-html-slideshow)\n",
" for more details.\n",
" Default: ''\n",
" Equivalent to: [--SlidesExporter.reveal_url_prefix]\n",
"--nbformat=<Enum>\n",
" The nbformat version to write.\n",
" Use this to downgrade notebooks.\n",
" Choices: any of [1, 2, 3, 4]\n",
" Default: 4\n",
" Equivalent to: [--NotebookExporter.nbformat_version]\n",
"\n",
"Examples\n",
"--------\n",
"\n",
" The simplest way to use nbconvert is\n",
"\n",
" > jupyter nbconvert mynotebook.ipynb --to html\n",
"\n",
" Options include ['asciidoc', 'custom', 'html', 'latex', 'markdown', 'notebook', 'pdf', 'python', 'qtpdf', 'qtpng', 'rst', 'script', 'slides', 'webpdf'].\n",
"\n",
" > jupyter nbconvert --to latex mynotebook.ipynb\n",
"\n",
" Both HTML and LaTeX support multiple output templates. LaTeX includes\n",
" 'base', 'article' and 'report'. HTML includes 'basic', 'lab' and\n",
" 'classic'. You can specify the flavor of the format used.\n",
"\n",
" > jupyter nbconvert --to html --template lab mynotebook.ipynb\n",
"\n",
" You can also pipe the output to stdout, rather than a file\n",
"\n",
" > jupyter nbconvert mynotebook.ipynb --stdout\n",
"\n",
" PDF is generated via latex\n",
"\n",
" > jupyter nbconvert mynotebook.ipynb --to pdf\n",
"\n",
" You can get (and serve) a Reveal.js-powered slideshow\n",
"\n",
" > jupyter nbconvert myslides.ipynb --to slides --post serve\n",
"\n",
" Multiple notebooks can be given at the command line in a couple of\n",
" different ways:\n",
"\n",
" > jupyter nbconvert notebook*.ipynb\n",
" > jupyter nbconvert notebook1.ipynb notebook2.ipynb\n",
"\n",
" or you can specify the notebooks list in a config file, containing::\n",
"\n",
" c.NbConvertApp.notebooks = [\"my_notebook.ipynb\"]\n",
"\n",
" > jupyter nbconvert --config mycfg.py\n",
"\n",
"To see all available configurables, use `--help-all`.\n",
"\n"
]
}
],
"source": [
"# !jupyter nbconvert --to script mnist.ipynb\n",
"!jupyter nbconvert --to script --TagRemovePreprocessor.remove_cell_tags=\"exclude\" --TemplateExporter.exclude_input_prompt=True mnist.ipynb\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": [
"exclude"
]
},
"outputs": [],
"source": [
"# from IPython.display import HTML, display, Image\n",
"# %%html\n",
"# <style>\n",
"# #whiteboard {\n",
"# border: 3px solid black;\n",
"# border-radius: 6px; \n",
"# background-color: #FFFFFF;\n",
"# }\n",
"# #capture-button {\n",
"# background-color: #3F52D9; \n",
"# color: white;\n",
"# border: none;\n",
"# padding: 10px 20px;\n",
"# cursor: pointer;\n",
"# font-size: 16px;\n",
"# border-radius: 3px;\n",
"# margin-top: 10px;\n",
"# width: 190px;\n",
"# margin-right: 20px;\n",
"# }\n",
"# #clear-button {\n",
"# background-color: #FF0000,; \n",
"# color: black;\n",
"# border: none;\n",
"# padding: 10px 20px;\n",
"# cursor: pointer;\n",
"# font-size: 16px;\n",
"# border-radius: 3px;\n",
"# margin-top: 10px;\n",
"# width: 190px;\n",
"# }\n",
"# #container {\n",
"# display: flex;\n",
"# flex-direction: column; /* Arrange children vertically */\n",
"# align-items: center; /* Center horizontally */\n",
"# justify-content: center;\n",
"# }\n",
"# #btn-container {\n",
"# display: flex;\n",
"# flex-direction: row; /* Arrange children vertically */\n",
"# align-items: center; /* Center horizontally */\n",
"# }\n",
"\n",
"# </style>\n",
"# <div id='container'>\n",
"# <canvas id=\"whiteboard\" width=\"400\" height=\"200\" fill_rect='white'></canvas>\n",
"# <div id='btn-container'>\n",
"# <button id=\"capture-button\">Predict</button>\n",
"# <button id=\"clear-button\">Clear</button>\n",
"# </div>\n",
"\n",
"# </div>\n",
"# <script>\n",
"# var canvas = document.getElementById('whiteboard');\n",
"# var context = canvas.getContext('2d');\n",
"# var drawing = false;\n",
"# canvas.addEventListener('mousedown', function (e) {\n",
"# drawing = true;\n",
"# context.beginPath();\n",
"# context.moveTo(e.clientX - canvas.getBoundingClientRect().left, e.clientY - canvas.getBoundingClientRect().top);\n",
"# });\n",
"# canvas.addEventListener('mousemove', function (e) {\n",
"# if (drawing) {\n",
"# context.lineTo(e.clientX - canvas.getBoundingClientRect().left, e.clientY - canvas.getBoundingClientRect().top);\n",
"# context.stroke();\n",
"# }\n",
"# });\n",
"# canvas.addEventListener('mouseup', function () {\n",
"# drawing = false;\n",
"# });\n",
"# canvas.addEventListener('mouseout', function () {\n",
"# drawing = false;\n",
"# });\n",
" \n",
"# var clearButton = document.getElementById('clear-button');\n",
"# clearButton.addEventListener('click', function () {\n",
"# context.clearRect(0, 0, canvas.width, canvas.height);\n",
"# });\n",
"\n",
"# var captureButton = document.getElementById('capture-button');\n",
"# captureButton.addEventListener('click', function () {\n",
"# // Convert the canvas content to a data URL (image)\n",
"# var imageData = canvas.toDataURL(\"image/png\");\n",
"\n",
"# // Send the image data to the Jupyter kernel variable\n",
"# IPython.notebook.kernel.execute('image_data = \"' + imageData + '\"');\n",
"# });\n",
"# </script>\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "python_main",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|