mnist / server.py
carlfeynman's picture
debug
652d2d6
raw
history blame
1.59 kB
from fastapi import FastAPI, UploadFile
from PIL import Image
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from pathlib import Path
import mnist_classifier
import torch
from pathlib import Path
import datetime
import numpy as np
from pydantic import BaseModel
app = FastAPI()
app.mount("/static", StaticFiles(directory=Path("static")), name="static")
@app.get("/")
async def root():
return FileResponse("static/index.html")
upload_dir = Path("uploads")
upload_dir.mkdir(parents=True, exist_ok=True)
def process_image(file):
image = Image.open(file.file)
image = image.resize((28, 28)) # Resize to MNIST image size
image = image.convert("L") # Convert to grayscale
raw_image = image
image = np.array(image)
image = image / 255.0 # Normalize pixel values
return torch.from_numpy(image).float().reshape(1, 28, 28), raw_image
def store_img(image):
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
unique_filename = f"{timestamp}.png"
output_path = upload_dir / unique_filename
image.save(output_path)
@app.post("/predict")
async def predict(image: UploadFile):
print(image)
# tensor_image, raw_image = process_image(image)
# print(tensor_image.shape)
# prediction = mnist_classifier.predict(tensor_image)
# store_img(raw_image)
prediction = []
return {"prediction": prediction}
class Item(BaseModel):
name: str
@app.post("/home")
async def home(item: Item):
return {
'prediction': [{
'name': item.name
}]
}