Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, UploadFile | |
from PIL import Image | |
from fastapi.responses import FileResponse | |
from fastapi.staticfiles import StaticFiles | |
from pathlib import Path | |
import mnist_classifier | |
import torch | |
from pathlib import Path | |
import datetime | |
import numpy as np | |
from pydantic import BaseModel | |
app = FastAPI() | |
app.mount("/static", StaticFiles(directory=Path("static")), name="static") | |
async def root(): | |
return FileResponse("static/index.html") | |
upload_dir = Path("uploads") | |
upload_dir.mkdir(parents=True, exist_ok=True) | |
def process_image(file): | |
image = Image.open(file.file) | |
image = image.resize((28, 28)) # Resize to MNIST image size | |
image = image.convert("L") # Convert to grayscale | |
raw_image = image | |
image = np.array(image) | |
image = image / 255.0 # Normalize pixel values | |
return torch.from_numpy(image).float().reshape(1, 28, 28), raw_image | |
def store_img(image): | |
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
unique_filename = f"{timestamp}.png" | |
output_path = upload_dir / unique_filename | |
image.save(output_path) | |
async def predict(image: UploadFile): | |
print(image) | |
# tensor_image, raw_image = process_image(image) | |
# print(tensor_image.shape) | |
# prediction = mnist_classifier.predict(tensor_image) | |
# store_img(raw_image) | |
prediction = [] | |
return {"prediction": prediction} | |
class Item(BaseModel): | |
name: str | |
async def home(item: Item): | |
return { | |
'prediction': [{ | |
'name': item.name | |
}] | |
} | |