from fastapi import FastAPI, UploadFile from PIL import Image from fastapi.responses import FileResponse from fastapi.staticfiles import StaticFiles from pathlib import Path import mnist_classifier import torch from pathlib import Path import datetime import numpy as np from pydantic import BaseModel app = FastAPI() app.mount("/static", StaticFiles(directory=Path("static")), name="static") @app.get("/") async def root(): return FileResponse("static/index.html") upload_dir = Path("uploads") upload_dir.mkdir(parents=True, exist_ok=True) def process_image(file): image = Image.open(file.file) image = image.resize((28, 28)) # Resize to MNIST image size image = image.convert("L") # Convert to grayscale raw_image = image image = np.array(image) image = image / 255.0 # Normalize pixel values return torch.from_numpy(image).float().reshape(1, 28, 28), raw_image def store_img(image): timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") unique_filename = f"{timestamp}.png" output_path = upload_dir / unique_filename image.save(output_path) @app.post("/predict") async def predict(image: UploadFile): print(image) # tensor_image, raw_image = process_image(image) # print(tensor_image.shape) # prediction = mnist_classifier.predict(tensor_image) # store_img(raw_image) prediction = [] return {"prediction": prediction} class Item(BaseModel): name: str @app.post("/home") async def home(item: Item): return { 'prediction': [{ 'name': item.name }] }