#!/usr/bin/env python # coding: utf-8 import torch from torch import nn import torch.nn.functional as F from datasets import load_dataset import fastcore.all as fc import matplotlib.pyplot as plt import matplotlib as mpl import torchvision.transforms.functional as TF from torch.utils.data import default_collate, DataLoader import torch.optim as optim def transform_ds(b): b[x] = [TF.to_tensor(ele) for ele in b[x]] return b bs = 1024 class DataLoaders: def __init__(self, train_ds, valid_ds, bs, collate_fn, **kwargs): self.train = DataLoader(train_ds, batch_size=bs, shuffle=True, collate_fn=collate_fn, **kwargs) self.valid = DataLoader(valid_ds, batch_size=bs, shuffle=False, collate_fn=collate_fn, **kwargs) def collate_fn(b): collate = default_collate(b) return (collate[x], collate[y]) class Reshape(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): return x.reshape(self.dim) def conv(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None): layers = [nn.Conv2d(ni, nf, kernel_size=ks, stride=s, padding=ks//2)] if norm: layers.append(norm) if act: layers.append(act()) return nn.Sequential(*layers) def _conv_block(ni, nf, ks=3, s=2, act=nn.ReLU, norm=None): return nn.Sequential( conv(ni, nf, ks=ks, s=1, norm=None, act=act), conv(nf, nf, ks=ks, s=s, norm=norm, act=act), ) class ResBlock(nn.Module): def __init__(self, ni, nf, s=2, ks=3, act=nn.ReLU, norm=None): super().__init__() self.convs = _conv_block(ni, nf, s=s, ks=ks, act=act, norm=norm) self.idconv = fc.noop if ni==nf else conv(ni, nf, ks=1, s=1, act=None) self.pool = fc.noop if s==1 else nn.AvgPool2d(2, ceil_mode=True) self.act = act() def forward(self, x): return self.act(self.convs(x) + self.idconv(self.pool(x))) # def cnn_classifier(): # return nn.Sequential( # ResBlock(1, 8, norm=nn.BatchNorm2d(8)), # ResBlock(8, 16, norm=nn.BatchNorm2d(16)), # ResBlock(16, 32, norm=nn.BatchNorm2d(32)), # ResBlock(32, 64, norm=nn.BatchNorm2d(64)), # ResBlock(64, 64, norm=nn.BatchNorm2d(64)), # conv(64, 10, act=False), # nn.Flatten(), # ) def cnn_classifier(): return nn.Sequential( ResBlock(1, 8, norm=nn.LayerNorm([8, 14, 14])), ResBlock(8, 16, norm=nn.LayerNorm([16, 7, 7])), ResBlock(16, 32, norm=nn.LayerNorm([32, 4, 4])), ResBlock(32, 64, norm=nn.LayerNorm([64, 2, 2])), ResBlock(64, 64, norm=nn.LayerNorm([64, 1, 1])), conv(64, 10, act=False), nn.Flatten(), ) # def cnn_classifier(): # return nn.Sequential( # ResBlock(1, 8,), # ResBlock(8, 16, ), # ResBlock(16, 32,), # ResBlock(32, 64, ), # ResBlock(64, 64,), # conv(64, 10, act=False), # nn.Flatten(), # ) def kaiming_init(m): if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): nn.init.kaiming_normal_(m.weight) loaded_model = cnn_classifier() loaded_model.load_state_dict(torch.load('classifier.pth')); loaded_model.eval(); def predict(img): with torch.no_grad(): img = img[None,] pred = loaded_model(img)[0] pred_probs = F.softmax(pred, dim=0) pred = [{"digit": i, "prob": f'{prob*100:.2f}%', 'logits': pred[i]} for i, prob in enumerate(pred_probs)] pred = sorted(pred, key=lambda ele: ele['digit'], reverse=False) return pred