import gradio as gr import cv2 from huggingface_hub import from_pretrained_keras from skimage import io ROWS, COLS = 150, 150 model = from_pretrained_keras("carlosaguayo/cats_vs_dogs") def process_image(img): img = cv2.resize(img, (ROWS, COLS), interpolation=cv2.INTER_CUBIC) img = img / 255.0 img = img.reshape(1,ROWS,COLS,3) prediction = model.predict(img)[0][0] if prediction >= 0.5: message = 'I am {:.2%} sure this is a Cat'.format(prediction) else: message = 'I am {:.2%} sure this is a Dog'.format(1-prediction) return message title = "Interactive demo: Classify cat vs dog" description = "Simple Cat vs Dog classification" article = "" # examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]] iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(), outputs=gr.outputs.Textbox(), title=title, description=description) # article=article, # examples=examples) iface.launch()