perm-sc / app.py
crystina-z's picture
Update app.py
f62664e
raw
history blame
5 kB
import time
import json
import numpy as np
import streamlit as st
from pathlib import Path
from collections import defaultdict
import sys
path_root = Path("./")
sys.path.append(str(path_root))
st.set_page_config(page_title="PSC Runtime",
page_icon='🌸', layout="centered")
name = st.selectbox(
"Choose a dataset",
["dl19", "dl20"],
index=None,
placeholder="Choose a dataset..."
)
model_name = st.selectbox(
"Choose a model",
["gpt-3.5", "gpt-4"],
index=None,
placeholder="Choose a model..."
)
if name and model_name:
import torch
# fn = f"dl19-gpt-3.5.pt"
fn = f"{name}-{model_name}.pt"
object = torch.load(fn)
outputs = object[2]
query2outputs = {}
for output in outputs:
all_queries = {x['query'] for x in output}
assert len(all_queries) == 1
query = list(all_queries)[0]
query2outputs[query] = [x['hits'] for x in output]
search_query = st.selectbox(
"Choose a query from the list",
sorted(query2outputs),
# index=None,
# placeholder="Choose a query from the list..."
)
def preferences_from_hits(list_of_hits):
docid2id = {}
id2doc = {}
preferences = []
for result in list_of_hits:
for doc in result:
if doc["docid"] not in docid2id:
id = len(docid2id)
docid2id[doc["docid"]] = id
id2doc[id] = doc
print([doc["docid"] for doc in result])
print([docid2id[doc["docid"]] for doc in result])
preferences.append([docid2id[doc["docid"]] for doc in result])
# = {v: k for k, v in docid2id.items()}
return np.array(preferences), id2doc
def load_qrels(name):
import ir_datasets
if name == "dl19":
ds_name = "msmarco-passage/trec-dl-2019/judged"
elif name == "dl20":
ds_name = "msmarco-passage/trec-dl-2020/judged"
else:
raise ValueError(name)
dataset = ir_datasets.load(ds_name)
qrels = defaultdict(dict)
for qrel in dataset.qrels_iter():
qrels[qrel.query_id][qrel.doc_id] = qrel.relevance
return qrels
def aggregate(list_of_hits):
import numpy as np
from permsc import KemenyOptimalAggregator, sum_kendall_tau, ranks_from_preferences
from permsc import BordaRankAggregator
preferences, id2doc = preferences_from_hits(list_of_hits)
y_optimal = KemenyOptimalAggregator().aggregate(preferences)
# y_optimal = BordaRankAggregator().aggregate(preferences)
return [id2doc[id] for id in y_optimal]
def write_ranking(search_results, text):
st.write(f'<p align=\"right\" style=\"color:grey;\"> {text} ms</p>', unsafe_allow_html=True)
qid = {result["qid"] for result in search_results}
assert len(qid) == 1
qid = list(qid)[0]
for i, result in enumerate(search_results):
result_id = result["docid"]
contents = result["content"]
label = qrels[str(qid)].get(str(result_id), -1)
label_text = "Unlabeled"
if label == 3:
style = "style=\"color:rgb(237, 125, 12);\""
label_text = "High"
elif label == 2:
style = "style=\"color:rgb(244, 185, 66);\""
label_text = "Medium"
elif label == 1:
style = "style=\"color:rgb(241, 177, 118);\""
label_text = "Low"
elif label == 0:
style = "style=\"color:black;\""
label_text = "Not Relevance"
else:
style = "style=\"color:grey;\""
print(qid, result_id, label, style)
# output = f'<div class="row"> <b>Rank</b>: {i+1} | <b>Document ID</b>: {result_id} | <b>Score</b>:{result_score:.2f}</div>'
output_1 = f'<div class="row" {style}> <b>Rank</b>: {i+1} | <b>Document ID</b>: {result_id}</div>'
output_2 = f'<div class="row" {style}> <b>True Relevance</b>: {label_text}</div>'
try:
st.write(output_1, unsafe_allow_html=True)
st.write(output_2, unsafe_allow_html=True)
st.write(
f'<div class="row" {style}>{contents}</div>', unsafe_allow_html=True)
except:
pass
st.write('---')
aggregated_ranking = aggregate(query2outputs[search_query])
qrels = load_qrels(name)
col1, col2 = st.columns([5, 5])
if search_query:
with col1:
if search_query or button_clicked:
write_ranking(search_results=query2outputs[search_query][0], text="w/o PSC")
with col2:
if search_query or button_clicked:
write_ranking(search_results=aggregated_ranking, text="w/ PSC")