|
import gradio as gr |
|
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer |
|
from threading import Thread |
|
import re |
|
import time |
|
from PIL import Image |
|
import torch |
|
import spaces |
|
|
|
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf") |
|
|
|
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True) |
|
model.to("cuda:0") |
|
|
|
@spaces.GPU |
|
def bot_streaming(message, history): |
|
print(message) |
|
if message["files"]: |
|
image = message["files"][-1]["path"] |
|
else: |
|
|
|
|
|
for hist in history: |
|
if type(hist[0])==tuple: |
|
image = hist[0][0] |
|
|
|
if image is None: |
|
gr.Error("You need to upload an image for LLaVA to work.") |
|
prompt=f"[INST] <image>\n{message['text']} [/INST]" |
|
image = Image.open(image).convert("RGB") |
|
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") |
|
|
|
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True}) |
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=300) |
|
generated_text = "" |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
text_prompt =f"[INST] \n{message['text']} [/INST]" |
|
|
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
|
|
buffer += new_text |
|
|
|
generated_text_without_prompt = buffer[len(text_prompt):] |
|
time.sleep(0.04) |
|
yield generated_text_without_prompt |
|
|
|
|
|
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA NeXT", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]}, |
|
{"text": "How to make this pastry?", "files":["./baklava.png"]}], |
|
description="Try [LLaVA NeXT](https://huggingface.co/docs/transformers/main/en/model_doc/llava_next) in this demo (more specifically, the [Mistral-7B variant](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf)). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", |
|
stop_btn="Stop Generation", multimodal=True) |
|
demo.launch(debug=True) |