|
import torch |
|
import os |
|
import gradio as gr |
|
from PIL import Image |
|
from diffusers import ( |
|
StableDiffusionPipeline, |
|
StableDiffusionControlNetImg2ImgPipeline, |
|
ControlNetModel, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
DEISMultistepScheduler, |
|
HeunDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
) |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
"monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16 |
|
) |
|
|
|
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( |
|
"SG161222/Realistic_Vision_V2.0", |
|
controlnet=controlnet, |
|
safety_checker=None, |
|
torch_dtype=torch.float16, |
|
).to("cuda") |
|
pipe.enable_xformers_memory_efficient_attention() |
|
|
|
SAMPLER_MAP = { |
|
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), |
|
"Euler": lambda config: EulerDiscreteScheduler.from_config(config), |
|
} |
|
|
|
def inference( |
|
control_image: Image.Image, |
|
prompt: str, |
|
negative_prompt: str, |
|
guidance_scale: float = 8.0, |
|
controlnet_conditioning_scale: float = 1, |
|
strength: float = 0.9, |
|
seed: int = -1, |
|
sampler = "DPM++ Karras SDE", |
|
): |
|
if prompt is None or prompt == "": |
|
raise gr.Error("Prompt is required") |
|
|
|
control_image = control_image.resize((512, 512)) |
|
|
|
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config) |
|
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() |
|
|
|
out = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
control_image=control_image, |
|
guidance_scale=guidance_scale, |
|
controlnet_conditioning_scale=controlnet_conditioning_scale, |
|
generator=generator, |
|
strength=strength, |
|
num_inference_steps=30, |
|
) |
|
return out.images[0] |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown( |
|
''' |
|
# Illusion Diffusion 🌀 |
|
## Generate stunning illusion artwork with Stable Diffusion |
|
**[Follow me on Twitter](https://twitter.com/angrypenguinPNG)** |
|
''' |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
control_image = gr.Image(label="Input Illusion", type="pil") |
|
prompt = gr.Textbox(label="Prompt") |
|
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw") |
|
with gr.Accordion(label="Advanced Options", open=False): |
|
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale") |
|
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength") |
|
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale") |
|
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE") |
|
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True) |
|
run_btn = gr.Button("Run") |
|
with gr.Column(): |
|
result_image = gr.Image(label="Illusion Diffusion Output") |
|
|
|
run_btn.click( |
|
inference, |
|
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler], |
|
outputs=[result_image] |
|
) |
|
|
|
app.queue(concurrency_count=4, max_size=20) |
|
|
|
if __name__ == "__main__": |
|
app.launch(debug=True) |
|
|
|
|
|
|