|
import torch |
|
import gradio as gr |
|
from gradio import processing_utils, utils |
|
from PIL import Image |
|
import random |
|
from diffusers import ( |
|
DiffusionPipeline, |
|
AutoencoderKL, |
|
StableDiffusionControlNetPipeline, |
|
ControlNetModel, |
|
StableDiffusionLatentUpscalePipeline, |
|
StableDiffusionImg2ImgPipeline, |
|
StableDiffusionControlNetImg2ImgPipeline, |
|
DPMSolverMultistepScheduler, |
|
EulerDiscreteScheduler |
|
) |
|
import time |
|
from share_btn import community_icon_html, loading_icon_html, share_js |
|
import user_history |
|
from illusion_style import css |
|
|
|
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE" |
|
|
|
|
|
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16) |
|
|
|
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16) |
|
main_pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
BASE_MODEL, |
|
controlnet=controlnet, |
|
vae=vae, |
|
safety_checker=None, |
|
torch_dtype=torch.float16, |
|
).to("cuda") |
|
|
|
|
|
|
|
|
|
|
|
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SAMPLER_MAP = { |
|
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), |
|
"Euler": lambda config: EulerDiscreteScheduler.from_config(config), |
|
} |
|
|
|
def center_crop_resize(img, output_size=(512, 512)): |
|
width, height = img.size |
|
|
|
|
|
new_dimension = min(width, height) |
|
left = (width - new_dimension)/2 |
|
top = (height - new_dimension)/2 |
|
right = (width + new_dimension)/2 |
|
bottom = (height + new_dimension)/2 |
|
|
|
|
|
img = img.crop((left, top, right, bottom)) |
|
img = img.resize(output_size) |
|
|
|
return img |
|
|
|
def common_upscale(samples, width, height, upscale_method, crop=False): |
|
if crop == "center": |
|
old_width = samples.shape[3] |
|
old_height = samples.shape[2] |
|
old_aspect = old_width / old_height |
|
new_aspect = width / height |
|
x = 0 |
|
y = 0 |
|
if old_aspect > new_aspect: |
|
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) |
|
elif old_aspect < new_aspect: |
|
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) |
|
s = samples[:,:,y:old_height-y,x:old_width-x] |
|
else: |
|
s = samples |
|
|
|
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) |
|
|
|
def upscale(samples, upscale_method, scale_by): |
|
|
|
width = round(samples["images"].shape[3] * scale_by) |
|
height = round(samples["images"].shape[2] * scale_by) |
|
s = common_upscale(samples["images"], width, height, upscale_method, "disabled") |
|
return (s) |
|
|
|
def check_inputs(prompt: str, control_image: Image.Image): |
|
if control_image is None: |
|
raise gr.Error("Please select or upload an Input Illusion") |
|
if prompt is None or prompt == "": |
|
raise gr.Error("Prompt is required") |
|
|
|
def convert_to_pil(base64_image): |
|
pil_image = processing_utils.decode_base64_to_image(base64_image) |
|
return pil_image |
|
|
|
def convert_to_base64(pil_image): |
|
base64_image = processing_utils.encode_pil_to_base64(pil_image) |
|
return base64_image |
|
|
|
|
|
def inference( |
|
control_image: Image.Image, |
|
prompt: str, |
|
negative_prompt: str, |
|
guidance_scale: float = 8.0, |
|
controlnet_conditioning_scale: float = 1, |
|
control_guidance_start: float = 1, |
|
control_guidance_end: float = 1, |
|
upscaler_strength: float = 0.5, |
|
seed: int = -1, |
|
sampler = "DPM++ Karras SDE", |
|
progress = gr.Progress(track_tqdm=True), |
|
profile: gr.OAuthProfile | None = None, |
|
): |
|
start_time = time.time() |
|
start_time_struct = time.localtime(start_time) |
|
start_time_formatted = time.strftime("%H:%M:%S", start_time_struct) |
|
print(f"Inference started at {start_time_formatted}") |
|
|
|
|
|
|
|
|
|
|
|
control_image_small = center_crop_resize(control_image) |
|
control_image_large = center_crop_resize(control_image, (1024, 1024)) |
|
|
|
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config) |
|
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed |
|
generator = torch.Generator(device="cuda").manual_seed(my_seed) |
|
|
|
out = main_pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=control_image_small, |
|
guidance_scale=float(guidance_scale), |
|
controlnet_conditioning_scale=float(controlnet_conditioning_scale), |
|
generator=generator, |
|
control_guidance_start=float(control_guidance_start), |
|
control_guidance_end=float(control_guidance_end), |
|
num_inference_steps=15, |
|
output_type="latent" |
|
) |
|
upscaled_latents = upscale(out, "nearest-exact", 2) |
|
out_image = image_pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
control_image=control_image_large, |
|
image=upscaled_latents, |
|
guidance_scale=float(guidance_scale), |
|
generator=generator, |
|
num_inference_steps=20, |
|
strength=upscaler_strength, |
|
control_guidance_start=float(control_guidance_start), |
|
control_guidance_end=float(control_guidance_end), |
|
controlnet_conditioning_scale=float(controlnet_conditioning_scale) |
|
) |
|
end_time = time.time() |
|
end_time_struct = time.localtime(end_time) |
|
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct) |
|
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s") |
|
|
|
|
|
user_history.save_image( |
|
label=prompt, |
|
image=out_image["images"][0], |
|
profile=profile, |
|
metadata={ |
|
"prompt": prompt, |
|
"negative_prompt": negative_prompt, |
|
"guidance_scale": guidance_scale, |
|
"controlnet_conditioning_scale": controlnet_conditioning_scale, |
|
"control_guidance_start": control_guidance_start, |
|
"control_guidance_end": control_guidance_end, |
|
"upscaler_strength": upscaler_strength, |
|
"seed": seed, |
|
"sampler": sampler, |
|
}, |
|
) |
|
|
|
return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown( |
|
''' |
|
<center><h1>Illusion Diffusion HQ 🌀</h1></span> |
|
<span font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</span> |
|
</center> |
|
|
|
A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG) with big contributions from [multimodalart](https://twitter.com/multimodalart) |
|
|
|
This project works by using [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster). |
|
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :) |
|
''' |
|
) |
|
state_img_input = gr.State() |
|
state_img_output = gr.State() |
|
with gr.Row(): |
|
with gr.Column(): |
|
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image") |
|
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", elem_id="illusion_strength", info="ControlNet conditioning scale") |
|
gr.Examples(examples=["checkers.png", "checkers_mid.jpg", "pattern.png", "ultra_checkers.png", "spiral.jpeg", "funky.jpeg" ], inputs=control_image) |
|
prompt = gr.Textbox(label="Prompt", elem_id="prompt", info="Type what you want to generate", placeholder="Medieval village scene with busy streets and castle in the distance") |
|
negative_prompt = gr.Textbox(label="Negative Prompt", info="Type what you don't want to see", value="low quality", elem_id="negative_prompt") |
|
with gr.Accordion(label="Advanced Options", open=False): |
|
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale") |
|
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler") |
|
control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="Start of ControlNet") |
|
control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="End of ControlNet") |
|
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Strength of the upscaler") |
|
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 means random seed") |
|
used_seed = gr.Number(label="Last seed used",interactive=False) |
|
run_btn = gr.Button("Run") |
|
with gr.Column(): |
|
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output") |
|
with gr.Group(elem_id="share-btn-container", visible=False) as share_group: |
|
community_icon = gr.HTML(community_icon_html) |
|
loading_icon = gr.HTML(loading_icon_html) |
|
share_button = gr.Button("Share to community", elem_id="share-btn") |
|
|
|
prompt.submit( |
|
check_inputs, |
|
inputs=[prompt, control_image], |
|
queue=False |
|
).success( |
|
convert_to_pil, |
|
inputs=[control_image], |
|
outputs=[state_img_input], |
|
queue=False, |
|
preprocess=False, |
|
).success( |
|
inference, |
|
inputs=[state_img_input, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler], |
|
outputs=[state_img_output, result_image, share_group, used_seed] |
|
).success( |
|
convert_to_base64, |
|
inputs=[state_img_output], |
|
outputs=[result_image], |
|
queue=False, |
|
postprocess=False |
|
) |
|
run_btn.click( |
|
check_inputs, |
|
inputs=[prompt, control_image], |
|
queue=False |
|
).success( |
|
convert_to_pil, |
|
inputs=[control_image], |
|
outputs=[state_img_input], |
|
queue=False, |
|
preprocess=False, |
|
).success( |
|
inference, |
|
inputs=[state_img_input, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler], |
|
outputs=[state_img_output, result_image, share_group, used_seed] |
|
).success( |
|
convert_to_base64, |
|
inputs=[state_img_output], |
|
outputs=[result_image], |
|
queue=False, |
|
postprocess=False |
|
) |
|
share_button.click(None, [], [], _js=share_js) |
|
|
|
with gr.Blocks(css=css) as app_with_history: |
|
with gr.Tab("Demo"): |
|
app.render() |
|
with gr.Tab("Past generations"): |
|
user_history.render() |
|
|
|
app_with_history.queue(max_size=20,api_open=False ) |
|
|
|
if __name__ == "__main__": |
|
app_with_history.launch(max_threads=400) |
|
|