Spaces:
Running
on
Zero
Running
on
Zero
import json # to work with JSON | |
import threading # to allow streaming response | |
import time # to pave the deliver of the message | |
import faiss # to create a search index | |
import gradio # for the interface | |
import numpy # to work with vectors | |
import pandas # to work with pandas | |
import sentence_transformers # to load an embedding model | |
import spaces # for GPU | |
import transformers # to load an LLM | |
# Constants | |
GREETING = ( | |
"Howdy! " | |
"I'm an AI agent that uses [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about research by the [Design Research Collective](https://cmudrc.github.io/). " | |
"And the best part is that I always try to cite my sources! " | |
"I still make some mistakes though. " | |
"What can I tell you about today?" | |
) | |
EXAMPLE_QUERIES = [ | |
"Tell me about new research at the intersection of additive manufacturing and machine learning.", | |
"What is a physics-informed neural network and what can it be used for?", | |
"What can agent-based models do about climate change?", | |
"What's the difference between a markov chain and a hidden markov model?", | |
"What are the latest advancements in reinforcement learning?", | |
"What is known about different modes for human-AI teaming?", | |
] | |
EMBEDDING_MODEL_NAME = "allenai-specter" | |
LLM_MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct" | |
PUBLICATIONS_TO_RETRIEVE = 5 | |
PARQUET_URL = "hf://datasets/ccm/publications/data/train-00000-of-00001.parquet" | |
# Load the dataset and convert to pandas | |
data = pandas.read_parquet(PARQUET_URL) | |
# Filter out any publications without an abstract | |
abstract_is_null = [ | |
'"abstract": null' in json.dumps(bibdict) for bibdict in data["bib_dict"].values | |
] | |
data = data[~pandas.Series(abstract_is_null)] | |
data.reset_index(inplace=True) | |
# Load the model for later use in embeddings | |
model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME) | |
# Create an LLM pipeline that we can send queries to | |
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME, trust_remote_code=True) | |
streamer = transformers.TextIteratorStreamer( | |
tokenizer, skip_prompt=True, skip_special_tokens=True | |
) | |
chatmodel = transformers.AutoModelForCausalLM.from_pretrained( | |
LLM_MODEL_NAME, device_map="auto", torch_dtype="auto", trust_remote_code=True | |
) | |
# Create a FAISS index for fast similarity search | |
metric = faiss.METRIC_INNER_PRODUCT | |
vectors = numpy.stack(data["embedding"].tolist(), axis=0) | |
index = faiss.IndexFlatL2(len(data["embedding"][0])) | |
index.metric_type = metric | |
faiss.normalize_L2(vectors) | |
index.train(vectors) | |
index.add(vectors) | |
def preprocess(query: str, k: int) -> tuple[str, str]: | |
""" | |
Searches the dataset for the top k most relevant papers to the query and returns a prompt and references | |
Args: | |
query (str): The user's query | |
k (int): The number of results to return | |
Returns: | |
tuple[str, str]: A tuple containing the prompt and references | |
""" | |
encoded_query = numpy.expand_dims(model.encode(query), axis=0) | |
faiss.normalize_L2(encoded_query) | |
D, I = index.search(encoded_query, k) | |
top_five = data.loc[I[0]] | |
prompt = ( | |
"You are an AI assistant who delights in helping people learn about research from the Design Research Collective, which is a research lab at Carnegie Mellon University led by Professor Chris McComb. " | |
"Your main task is to provide a concise ANSWER to the USER_QUERY that includes as many of the RESEARCH_ABSTRACTS as possible. " | |
"The RESEARCH_ABSTRACTS are provided in the `.bibtex` format. Your ANSWER should contain citations to the RESEARCH_ABSTRACTS using (AUTHOR, YEAR) format. " | |
"DO NOT list references at the end of the answer.\n\n" | |
"RESEARCH_ABSTRACTS:\n```bibtex\n{{ABSTRACTS_GO_HERE}}\n```\n\n" | |
"USER_GUERY:\n{{QUERY_GOES_HERE}}\n\n" | |
"ANSWER:\n" | |
) | |
references = [] | |
research_abstracts = "" | |
for i in range(k): | |
year = str(int(top_five["bib_dict"].values[i]["pub_year"])) | |
abstract = top_five["bib_dict"].values[i]["abstract"] | |
url = "https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i] | |
title = top_five["bib_dict"].values[i]["title"] | |
last_names = [ | |
author.split(" ")[-1] | |
for author in top_five["bib_dict"] | |
.values[i]["author"] | |
.split(" and ") | |
] | |
authors = ", ".join( | |
last_names | |
) | |
first_authors_last_name = last_names[0] | |
research_abstracts += top_five["bibtex"].values[i] + "\n" | |
references.append(f"<a href=\"{url}\">{first_authors_last_name} {year}</a>") | |
prompt = prompt.replace("{{ABSTRACTS_GO_HERE}}", research_abstracts) | |
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query) | |
print(prompt) | |
return prompt, "; ".join(references) | |
def reply(message: str, history: list[str]) -> str: | |
""" | |
This function is responsible for crafting a response | |
Args: | |
message (str): The user's message | |
history (list[str]): The conversation history | |
Returns: | |
str: The AI's response | |
""" | |
# Apply preprocessing | |
message, bypass = preprocess(message, PUBLICATIONS_TO_RETRIEVE) | |
# This is some handling that is applied to the history variable to put it in a good format | |
history_transformer_format = [ | |
{"role": role, "content": message_pair[idx]} | |
for message_pair in history | |
for idx, role in enumerate(["user", "assistant"]) | |
if message_pair[idx] is not None | |
] + [{"role": "user", "content": message}] | |
# Stream a response from pipe | |
text = tokenizer.apply_chat_template( | |
history_transformer_format, tokenize=False, add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0") | |
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512) | |
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != "<": | |
partial_message += new_token | |
time.sleep(0.01) | |
yield partial_message | |
yield partial_message + "\n\n" + bypass | |
# Create and run the gradio interface | |
gradio.ChatInterface( | |
reply, | |
examples=EXAMPLE_QUERIES, | |
chatbot=gradio.Chatbot( | |
show_label=False, | |
show_share_button=False, | |
show_copy_button=False, | |
value=[[None, GREETING]], | |
avatar_images=[ | |
"https://cdn.dribbble.com/users/316121/screenshots/2333676/11-04_scotty-plaid_dribbble.png", | |
"https://media.thetab.com/blogs.dir/90/files/2021/06/screenshot-2021-06-10-at-110730-1024x537.png", | |
], | |
height="60vh", | |
bubble_full_width=False, | |
), | |
retry_btn=None, | |
undo_btn=None, | |
clear_btn=None, | |
theme=gradio.themes.Default( | |
font=[gradio.themes.GoogleFont("Zilla Slab")] | |
) | |
).launch(debug=True) | |