Spaces:
Runtime error
Runtime error
added prereq
Browse files- pytorch_i3d.py +354 -0
- videotransforms.py +102 -0
pytorch_i3d.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch.autograd import Variable
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
import os
|
| 9 |
+
import sys
|
| 10 |
+
from collections import OrderedDict
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class MaxPool3dSamePadding(nn.MaxPool3d):
|
| 14 |
+
|
| 15 |
+
def compute_pad(self, dim, s):
|
| 16 |
+
if s % self.stride[dim] == 0:
|
| 17 |
+
return max(self.kernel_size[dim] - self.stride[dim], 0)
|
| 18 |
+
else:
|
| 19 |
+
return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)
|
| 20 |
+
|
| 21 |
+
def forward(self, x):
|
| 22 |
+
# compute 'same' padding
|
| 23 |
+
(batch, channel, t, h, w) = x.size()
|
| 24 |
+
#print t,h,w
|
| 25 |
+
out_t = np.ceil(float(t) / float(self.stride[0]))
|
| 26 |
+
out_h = np.ceil(float(h) / float(self.stride[1]))
|
| 27 |
+
out_w = np.ceil(float(w) / float(self.stride[2]))
|
| 28 |
+
#print out_t, out_h, out_w
|
| 29 |
+
pad_t = self.compute_pad(0, t)
|
| 30 |
+
pad_h = self.compute_pad(1, h)
|
| 31 |
+
pad_w = self.compute_pad(2, w)
|
| 32 |
+
#print pad_t, pad_h, pad_w
|
| 33 |
+
|
| 34 |
+
pad_t_f = pad_t // 2
|
| 35 |
+
pad_t_b = pad_t - pad_t_f
|
| 36 |
+
pad_h_f = pad_h // 2
|
| 37 |
+
pad_h_b = pad_h - pad_h_f
|
| 38 |
+
pad_w_f = pad_w // 2
|
| 39 |
+
pad_w_b = pad_w - pad_w_f
|
| 40 |
+
|
| 41 |
+
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
|
| 42 |
+
#print x.size()
|
| 43 |
+
#print pad
|
| 44 |
+
x = F.pad(x, pad)
|
| 45 |
+
return super(MaxPool3dSamePadding, self).forward(x)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class Unit3D(nn.Module):
|
| 49 |
+
|
| 50 |
+
def __init__(self, in_channels,
|
| 51 |
+
output_channels,
|
| 52 |
+
kernel_shape=(1, 1, 1),
|
| 53 |
+
stride=(1, 1, 1),
|
| 54 |
+
padding=0,
|
| 55 |
+
activation_fn=F.relu,
|
| 56 |
+
use_batch_norm=True,
|
| 57 |
+
use_bias=False,
|
| 58 |
+
name='unit_3d'):
|
| 59 |
+
|
| 60 |
+
"""Initializes Unit3D module."""
|
| 61 |
+
super(Unit3D, self).__init__()
|
| 62 |
+
|
| 63 |
+
self._output_channels = output_channels
|
| 64 |
+
self._kernel_shape = kernel_shape
|
| 65 |
+
self._stride = stride
|
| 66 |
+
self._use_batch_norm = use_batch_norm
|
| 67 |
+
self._activation_fn = activation_fn
|
| 68 |
+
self._use_bias = use_bias
|
| 69 |
+
self.name = name
|
| 70 |
+
self.padding = padding
|
| 71 |
+
|
| 72 |
+
self.conv3d = nn.Conv3d(in_channels=in_channels,
|
| 73 |
+
out_channels=self._output_channels,
|
| 74 |
+
kernel_size=self._kernel_shape,
|
| 75 |
+
stride=self._stride,
|
| 76 |
+
padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function
|
| 77 |
+
bias=self._use_bias)
|
| 78 |
+
|
| 79 |
+
if self._use_batch_norm:
|
| 80 |
+
self.bn = nn.BatchNorm3d(self._output_channels, eps=0.001, momentum=0.01)
|
| 81 |
+
|
| 82 |
+
def compute_pad(self, dim, s):
|
| 83 |
+
if s % self._stride[dim] == 0:
|
| 84 |
+
return max(self._kernel_shape[dim] - self._stride[dim], 0)
|
| 85 |
+
else:
|
| 86 |
+
return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def forward(self, x):
|
| 90 |
+
# compute 'same' padding
|
| 91 |
+
(batch, channel, t, h, w) = x.size()
|
| 92 |
+
#print t,h,w
|
| 93 |
+
out_t = np.ceil(float(t) / float(self._stride[0]))
|
| 94 |
+
out_h = np.ceil(float(h) / float(self._stride[1]))
|
| 95 |
+
out_w = np.ceil(float(w) / float(self._stride[2]))
|
| 96 |
+
#print out_t, out_h, out_w
|
| 97 |
+
pad_t = self.compute_pad(0, t)
|
| 98 |
+
pad_h = self.compute_pad(1, h)
|
| 99 |
+
pad_w = self.compute_pad(2, w)
|
| 100 |
+
#print pad_t, pad_h, pad_w
|
| 101 |
+
|
| 102 |
+
pad_t_f = pad_t // 2
|
| 103 |
+
pad_t_b = pad_t - pad_t_f
|
| 104 |
+
pad_h_f = pad_h // 2
|
| 105 |
+
pad_h_b = pad_h - pad_h_f
|
| 106 |
+
pad_w_f = pad_w // 2
|
| 107 |
+
pad_w_b = pad_w - pad_w_f
|
| 108 |
+
|
| 109 |
+
pad = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
|
| 110 |
+
#print x.size()
|
| 111 |
+
#print pad
|
| 112 |
+
x = F.pad(x, pad)
|
| 113 |
+
#print x.size()
|
| 114 |
+
|
| 115 |
+
x = self.conv3d(x)
|
| 116 |
+
if self._use_batch_norm:
|
| 117 |
+
x = self.bn(x)
|
| 118 |
+
if self._activation_fn is not None:
|
| 119 |
+
x = self._activation_fn(x)
|
| 120 |
+
return x
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class InceptionModule(nn.Module):
|
| 125 |
+
def __init__(self, in_channels, out_channels, name):
|
| 126 |
+
super(InceptionModule, self).__init__()
|
| 127 |
+
|
| 128 |
+
self.b0 = Unit3D(in_channels=in_channels, output_channels=out_channels[0], kernel_shape=[1, 1, 1], padding=0,
|
| 129 |
+
name=name+'/Branch_0/Conv3d_0a_1x1')
|
| 130 |
+
self.b1a = Unit3D(in_channels=in_channels, output_channels=out_channels[1], kernel_shape=[1, 1, 1], padding=0,
|
| 131 |
+
name=name+'/Branch_1/Conv3d_0a_1x1')
|
| 132 |
+
self.b1b = Unit3D(in_channels=out_channels[1], output_channels=out_channels[2], kernel_shape=[3, 3, 3],
|
| 133 |
+
name=name+'/Branch_1/Conv3d_0b_3x3')
|
| 134 |
+
self.b2a = Unit3D(in_channels=in_channels, output_channels=out_channels[3], kernel_shape=[1, 1, 1], padding=0,
|
| 135 |
+
name=name+'/Branch_2/Conv3d_0a_1x1')
|
| 136 |
+
self.b2b = Unit3D(in_channels=out_channels[3], output_channels=out_channels[4], kernel_shape=[3, 3, 3],
|
| 137 |
+
name=name+'/Branch_2/Conv3d_0b_3x3')
|
| 138 |
+
self.b3a = MaxPool3dSamePadding(kernel_size=[3, 3, 3],
|
| 139 |
+
stride=(1, 1, 1), padding=0)
|
| 140 |
+
self.b3b = Unit3D(in_channels=in_channels, output_channels=out_channels[5], kernel_shape=[1, 1, 1], padding=0,
|
| 141 |
+
name=name+'/Branch_3/Conv3d_0b_1x1')
|
| 142 |
+
self.name = name
|
| 143 |
+
|
| 144 |
+
def forward(self, x):
|
| 145 |
+
b0 = self.b0(x)
|
| 146 |
+
b1 = self.b1b(self.b1a(x))
|
| 147 |
+
b2 = self.b2b(self.b2a(x))
|
| 148 |
+
b3 = self.b3b(self.b3a(x))
|
| 149 |
+
return torch.cat([b0,b1,b2,b3], dim=1)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class InceptionI3d(nn.Module):
|
| 153 |
+
"""Inception-v1 I3D architecture.
|
| 154 |
+
The model is introduced in:
|
| 155 |
+
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
|
| 156 |
+
Joao Carreira, Andrew Zisserman
|
| 157 |
+
https://arxiv.org/pdf/1705.07750v1.pdf.
|
| 158 |
+
See also the Inception architecture, introduced in:
|
| 159 |
+
Going deeper with convolutions
|
| 160 |
+
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
|
| 161 |
+
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
|
| 162 |
+
http://arxiv.org/pdf/1409.4842v1.pdf.
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
# Endpoints of the model in order. During construction, all the endpoints up
|
| 166 |
+
# to a designated `final_endpoint` are returned in a dictionary as the
|
| 167 |
+
# second return value.
|
| 168 |
+
VALID_ENDPOINTS = (
|
| 169 |
+
'Conv3d_1a_7x7',
|
| 170 |
+
'MaxPool3d_2a_3x3',
|
| 171 |
+
'Conv3d_2b_1x1',
|
| 172 |
+
'Conv3d_2c_3x3',
|
| 173 |
+
'MaxPool3d_3a_3x3',
|
| 174 |
+
'Mixed_3b',
|
| 175 |
+
'Mixed_3c',
|
| 176 |
+
'MaxPool3d_4a_3x3',
|
| 177 |
+
'Mixed_4b',
|
| 178 |
+
'Mixed_4c',
|
| 179 |
+
'Mixed_4d',
|
| 180 |
+
'Mixed_4e',
|
| 181 |
+
'Mixed_4f',
|
| 182 |
+
'MaxPool3d_5a_2x2',
|
| 183 |
+
'Mixed_5b',
|
| 184 |
+
'Mixed_5c',
|
| 185 |
+
'Logits',
|
| 186 |
+
'Predictions',
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
def __init__(self, num_classes=400, spatial_squeeze=True,
|
| 190 |
+
final_endpoint='Logits', name='inception_i3d', in_channels=3, dropout_keep_prob=0.5):
|
| 191 |
+
"""Initializes I3D model instance.
|
| 192 |
+
Args:
|
| 193 |
+
num_classes: The number of outputs in the logit layer (default 400, which
|
| 194 |
+
matches the Kinetics dataset).
|
| 195 |
+
spatial_squeeze: Whether to squeeze the spatial dimensions for the logits
|
| 196 |
+
before returning (default True).
|
| 197 |
+
final_endpoint: The model contains many possible endpoints.
|
| 198 |
+
`final_endpoint` specifies the last endpoint for the model to be built
|
| 199 |
+
up to. In addition to the output at `final_endpoint`, all the outputs
|
| 200 |
+
at endpoints up to `final_endpoint` will also be returned, in a
|
| 201 |
+
dictionary. `final_endpoint` must be one of
|
| 202 |
+
InceptionI3d.VALID_ENDPOINTS (default 'Logits').
|
| 203 |
+
name: A string (optional). The name of this module.
|
| 204 |
+
Raises:
|
| 205 |
+
ValueError: if `final_endpoint` is not recognized.
|
| 206 |
+
"""
|
| 207 |
+
|
| 208 |
+
if final_endpoint not in self.VALID_ENDPOINTS:
|
| 209 |
+
raise ValueError('Unknown final endpoint %s' % final_endpoint)
|
| 210 |
+
|
| 211 |
+
super(InceptionI3d, self).__init__()
|
| 212 |
+
self._num_classes = num_classes
|
| 213 |
+
self._spatial_squeeze = spatial_squeeze
|
| 214 |
+
self._final_endpoint = final_endpoint
|
| 215 |
+
self.logits = None
|
| 216 |
+
|
| 217 |
+
if self._final_endpoint not in self.VALID_ENDPOINTS:
|
| 218 |
+
raise ValueError('Unknown final endpoint %s' % self._final_endpoint)
|
| 219 |
+
|
| 220 |
+
self.end_points = {}
|
| 221 |
+
end_point = 'Conv3d_1a_7x7'
|
| 222 |
+
self.end_points[end_point] = Unit3D(in_channels=in_channels, output_channels=64, kernel_shape=[7, 7, 7],
|
| 223 |
+
stride=(2, 2, 2), padding=(3,3,3), name=name+end_point)
|
| 224 |
+
if self._final_endpoint == end_point: return
|
| 225 |
+
|
| 226 |
+
end_point = 'MaxPool3d_2a_3x3'
|
| 227 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
|
| 228 |
+
padding=0)
|
| 229 |
+
if self._final_endpoint == end_point: return
|
| 230 |
+
|
| 231 |
+
end_point = 'Conv3d_2b_1x1'
|
| 232 |
+
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=64, kernel_shape=[1, 1, 1], padding=0,
|
| 233 |
+
name=name+end_point)
|
| 234 |
+
if self._final_endpoint == end_point: return
|
| 235 |
+
|
| 236 |
+
end_point = 'Conv3d_2c_3x3'
|
| 237 |
+
self.end_points[end_point] = Unit3D(in_channels=64, output_channels=192, kernel_shape=[3, 3, 3], padding=1,
|
| 238 |
+
name=name+end_point)
|
| 239 |
+
if self._final_endpoint == end_point: return
|
| 240 |
+
|
| 241 |
+
end_point = 'MaxPool3d_3a_3x3'
|
| 242 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[1, 3, 3], stride=(1, 2, 2),
|
| 243 |
+
padding=0)
|
| 244 |
+
if self._final_endpoint == end_point: return
|
| 245 |
+
|
| 246 |
+
end_point = 'Mixed_3b'
|
| 247 |
+
self.end_points[end_point] = InceptionModule(192, [64,96,128,16,32,32], name+end_point)
|
| 248 |
+
if self._final_endpoint == end_point: return
|
| 249 |
+
|
| 250 |
+
end_point = 'Mixed_3c'
|
| 251 |
+
self.end_points[end_point] = InceptionModule(256, [128,128,192,32,96,64], name+end_point)
|
| 252 |
+
if self._final_endpoint == end_point: return
|
| 253 |
+
|
| 254 |
+
end_point = 'MaxPool3d_4a_3x3'
|
| 255 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[3, 3, 3], stride=(2, 2, 2),
|
| 256 |
+
padding=0)
|
| 257 |
+
if self._final_endpoint == end_point: return
|
| 258 |
+
|
| 259 |
+
end_point = 'Mixed_4b'
|
| 260 |
+
self.end_points[end_point] = InceptionModule(128+192+96+64, [192,96,208,16,48,64], name+end_point)
|
| 261 |
+
if self._final_endpoint == end_point: return
|
| 262 |
+
|
| 263 |
+
end_point = 'Mixed_4c'
|
| 264 |
+
self.end_points[end_point] = InceptionModule(192+208+48+64, [160,112,224,24,64,64], name+end_point)
|
| 265 |
+
if self._final_endpoint == end_point: return
|
| 266 |
+
|
| 267 |
+
end_point = 'Mixed_4d'
|
| 268 |
+
self.end_points[end_point] = InceptionModule(160+224+64+64, [128,128,256,24,64,64], name+end_point)
|
| 269 |
+
if self._final_endpoint == end_point: return
|
| 270 |
+
|
| 271 |
+
end_point = 'Mixed_4e'
|
| 272 |
+
self.end_points[end_point] = InceptionModule(128+256+64+64, [112,144,288,32,64,64], name+end_point)
|
| 273 |
+
if self._final_endpoint == end_point: return
|
| 274 |
+
|
| 275 |
+
end_point = 'Mixed_4f'
|
| 276 |
+
self.end_points[end_point] = InceptionModule(112+288+64+64, [256,160,320,32,128,128], name+end_point)
|
| 277 |
+
if self._final_endpoint == end_point: return
|
| 278 |
+
|
| 279 |
+
end_point = 'MaxPool3d_5a_2x2'
|
| 280 |
+
self.end_points[end_point] = MaxPool3dSamePadding(kernel_size=[2, 2, 2], stride=(2, 2, 2),
|
| 281 |
+
padding=0)
|
| 282 |
+
if self._final_endpoint == end_point: return
|
| 283 |
+
|
| 284 |
+
end_point = 'Mixed_5b'
|
| 285 |
+
self.end_points[end_point] = InceptionModule(256+320+128+128, [256,160,320,32,128,128], name+end_point)
|
| 286 |
+
if self._final_endpoint == end_point: return
|
| 287 |
+
|
| 288 |
+
end_point = 'Mixed_5c'
|
| 289 |
+
self.end_points[end_point] = InceptionModule(256+320+128+128, [384,192,384,48,128,128], name+end_point)
|
| 290 |
+
if self._final_endpoint == end_point: return
|
| 291 |
+
|
| 292 |
+
end_point = 'Logits'
|
| 293 |
+
self.avg_pool = nn.AvgPool3d(kernel_size=[2, 7, 7],
|
| 294 |
+
stride=(1, 1, 1))
|
| 295 |
+
self.dropout = nn.Dropout(dropout_keep_prob)
|
| 296 |
+
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
|
| 297 |
+
kernel_shape=[1, 1, 1],
|
| 298 |
+
padding=0,
|
| 299 |
+
activation_fn=None,
|
| 300 |
+
use_batch_norm=False,
|
| 301 |
+
use_bias=True,
|
| 302 |
+
name='logits')
|
| 303 |
+
|
| 304 |
+
self.build()
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def replace_logits(self, num_classes):
|
| 308 |
+
self._num_classes = num_classes
|
| 309 |
+
self.logits = Unit3D(in_channels=384+384+128+128, output_channels=self._num_classes,
|
| 310 |
+
kernel_shape=[1, 1, 1],
|
| 311 |
+
padding=0,
|
| 312 |
+
activation_fn=None,
|
| 313 |
+
use_batch_norm=False,
|
| 314 |
+
use_bias=True,
|
| 315 |
+
name='logits')
|
| 316 |
+
|
| 317 |
+
def build(self):
|
| 318 |
+
for k in self.end_points.keys():
|
| 319 |
+
self.add_module(k, self.end_points[k])
|
| 320 |
+
|
| 321 |
+
def forward(self, x, pretrained=False, n_tune_layers=-1):
|
| 322 |
+
if pretrained:
|
| 323 |
+
assert n_tune_layers >= 0
|
| 324 |
+
|
| 325 |
+
freeze_endpoints = self.VALID_ENDPOINTS[:-n_tune_layers]
|
| 326 |
+
tune_endpoints = self.VALID_ENDPOINTS[-n_tune_layers:]
|
| 327 |
+
else:
|
| 328 |
+
freeze_endpoints = []
|
| 329 |
+
tune_endpoints = self.VALID_ENDPOINTS
|
| 330 |
+
|
| 331 |
+
# backbone, no gradient part
|
| 332 |
+
with torch.no_grad():
|
| 333 |
+
for end_point in freeze_endpoints:
|
| 334 |
+
if end_point in self.end_points:
|
| 335 |
+
x = self._modules[end_point](x) # use _modules to work with dataparallel
|
| 336 |
+
|
| 337 |
+
# backbone, gradient part
|
| 338 |
+
for end_point in tune_endpoints:
|
| 339 |
+
if end_point in self.end_points:
|
| 340 |
+
x = self._modules[end_point](x) # use _modules to work with dataparallel
|
| 341 |
+
|
| 342 |
+
# head
|
| 343 |
+
x = self.logits(self.dropout(self.avg_pool(x)))
|
| 344 |
+
if self._spatial_squeeze:
|
| 345 |
+
logits = x.squeeze(3).squeeze(3)
|
| 346 |
+
# logits is batch X time X classes, which is what we want to work with
|
| 347 |
+
return logits
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def extract_features(self, x):
|
| 351 |
+
for end_point in self.VALID_ENDPOINTS:
|
| 352 |
+
if end_point in self.end_points:
|
| 353 |
+
x = self._modules[end_point](x)
|
| 354 |
+
return self.avg_pool(x)
|
videotransforms.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import numbers
|
| 3 |
+
import random
|
| 4 |
+
|
| 5 |
+
class RandomCrop(object):
|
| 6 |
+
"""Crop the given video sequences (t x h x w) at a random location.
|
| 7 |
+
Args:
|
| 8 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
| 9 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
| 10 |
+
made.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
def __init__(self, size):
|
| 14 |
+
if isinstance(size, numbers.Number):
|
| 15 |
+
self.size = (int(size), int(size))
|
| 16 |
+
else:
|
| 17 |
+
self.size = size
|
| 18 |
+
|
| 19 |
+
@staticmethod
|
| 20 |
+
def get_params(img, output_size):
|
| 21 |
+
"""Get parameters for ``crop`` for a random crop.
|
| 22 |
+
Args:
|
| 23 |
+
img (PIL Image): Image to be cropped.
|
| 24 |
+
output_size (tuple): Expected output size of the crop.
|
| 25 |
+
Returns:
|
| 26 |
+
tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
|
| 27 |
+
"""
|
| 28 |
+
t, h, w, c = img.shape
|
| 29 |
+
th, tw = output_size
|
| 30 |
+
if w == tw and h == th:
|
| 31 |
+
return 0, 0, h, w
|
| 32 |
+
|
| 33 |
+
i = random.randint(0, h - th) if h!=th else 0
|
| 34 |
+
j = random.randint(0, w - tw) if w!=tw else 0
|
| 35 |
+
return i, j, th, tw
|
| 36 |
+
|
| 37 |
+
def __call__(self, imgs):
|
| 38 |
+
|
| 39 |
+
i, j, h, w = self.get_params(imgs, self.size)
|
| 40 |
+
|
| 41 |
+
imgs = imgs[:, i:i+h, j:j+w, :]
|
| 42 |
+
return imgs
|
| 43 |
+
|
| 44 |
+
def __repr__(self):
|
| 45 |
+
return self.__class__.__name__ + '(size={0})'.format(self.size)
|
| 46 |
+
|
| 47 |
+
class CenterCrop(object):
|
| 48 |
+
"""Crops the given seq Images at the center.
|
| 49 |
+
Args:
|
| 50 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
| 51 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
| 52 |
+
made.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
def __init__(self, size):
|
| 56 |
+
if isinstance(size, numbers.Number):
|
| 57 |
+
self.size = (int(size), int(size))
|
| 58 |
+
else:
|
| 59 |
+
self.size = size
|
| 60 |
+
|
| 61 |
+
def __call__(self, imgs):
|
| 62 |
+
"""
|
| 63 |
+
Args:
|
| 64 |
+
img (PIL Image): Image to be cropped.
|
| 65 |
+
Returns:
|
| 66 |
+
PIL Image: Cropped image.
|
| 67 |
+
"""
|
| 68 |
+
t, h, w, c = imgs.shape
|
| 69 |
+
th, tw = self.size
|
| 70 |
+
i = int(np.round((h - th) / 2.))
|
| 71 |
+
j = int(np.round((w - tw) / 2.))
|
| 72 |
+
|
| 73 |
+
return imgs[:, i:i+th, j:j+tw, :]
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def __repr__(self):
|
| 77 |
+
return self.__class__.__name__ + '(size={0})'.format(self.size)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class RandomHorizontalFlip(object):
|
| 81 |
+
"""Horizontally flip the given seq Images randomly with a given probability.
|
| 82 |
+
Args:
|
| 83 |
+
p (float): probability of the image being flipped. Default value is 0.5
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
def __init__(self, p=0.5):
|
| 87 |
+
self.p = p
|
| 88 |
+
|
| 89 |
+
def __call__(self, imgs):
|
| 90 |
+
"""
|
| 91 |
+
Args:
|
| 92 |
+
img (seq Images): seq Images to be flipped.
|
| 93 |
+
Returns:
|
| 94 |
+
seq Images: Randomly flipped seq images.
|
| 95 |
+
"""
|
| 96 |
+
if random.random() < self.p:
|
| 97 |
+
# t x h x w
|
| 98 |
+
return np.flip(imgs, axis=2).copy()
|
| 99 |
+
return imgs
|
| 100 |
+
|
| 101 |
+
def __repr__(self):
|
| 102 |
+
return self.__class__.__name__ + '(p={})'.format(self.p)
|