import streamlit as st
import torch
from sentence_transformers import SentenceTransformer, util
import pickle
import re
# Load the pre-trained SentenceTransformer model
model = SentenceTransformer('neuml/pubmedbert-base-embeddings')
# Load stored data
with open("embeddings_1.pkl", "rb") as fIn:
stored_data = pickle.load(fIn)
stored_embeddings = stored_data["embeddings"]
with open("embeddings_2.pkl", "rb") as fIn:
stored_data_cpt = pickle.load(fIn)
stored_embeddings_cpt = stored_data_cpt["embeddings"]
def validate_input(input_string):
# Regular expression pattern to match letters and numbers, or letters only
pattern = r'^[a-zA-Z0-9]+$|^[a-zA-Z]+$'
# Check if input contains at least one non-numeric character
if re.match(pattern, input_string) or input_string.isdigit():
return True
else:
return False
def cpt_code(user_input):
emb1 = model.encode(user_input.lower())
similarities = []
for sentence in stored_embeddings:
similarity = util.cos_sim(sentence, emb1)
similarities.append(similarity)
# Filter results with similarity scores above 0.70
result = [(code, desc, sim) for (code, desc, sim) in zip(stored_data["SBS_code"], stored_data["Description"], similarities)]
# Sort results by similarity scores
result.sort(key=lambda x: x[2], reverse=True)
num_results = min(5, len(result))
# Return top 5 entries with 'code', 'description', and 'similarity_score'
top_5_results = []
if num_results > 0:
for i in range(num_results):
code, description, similarity_score = result[i]
top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score})
else:
top_5_results.append({"Code": "", "Description": "No match", "Similarity Score": 0.0})
return top_5_results
def sbs_code(user_input):
emb1 = model.encode(user_input.lower())
similarities = []
for sentence in stored_embeddings_cpt:
similarity = util.cos_sim(sentence, emb1)
similarities.append(similarity)
# Filter results with similarity scores above 0.70
result = [(code, desc, sim) for (code, desc, sim) in zip(stored_data_cpt["CPT_CODE"], stored_data_cpt["Description"], similarities)]
# Sort results by similarity scores
result.sort(key=lambda x: x[2], reverse=True)
num_results = min(5, len(result))
# Return top 5 entries with 'code', 'description', and 'similarity_score'
top_5_results = []
if num_results > 0:
for i in range(num_results):
code, description, similarity_score = result[i]
top_5_results.append({"Code": code, "Description": description, "Similarity Score": similarity_score})
else:
top_5_results.append({"Code": "", "Description": "No match", "Similarity Score": 0.0})
return top_5_results
def mapping_code(user_input, mode):
if mode == "CPT_to_SBS":
return cpt_code(user_input)
elif mode == "SBS_to_CPT":
return sbs_code(user_input)
# Streamlit frontend interface
def main():
st.title("CPT-SBS Code Mapping")
st.markdown("**⚠️ Please enter the input CPT/SBS description with specific available details for best results.**", unsafe_allow_html=True)
st.markdown("**💡 Note:** Please note that the similarity scores provided are not indicative of accuracy. Top 5 code descriptions provided should be verified with CPT/SBS descriptions by the user.", unsafe_allow_html=True)
# Dropdown for user to choose mapping direction
mapping_mode = st.selectbox("Choose mapping direction:", ("CPT description to SBS code", "SBS description to CPT code"))
if mapping_mode == "CPT description to SBS code":
user_input_label = "Enter CPT description:"
mode = "CPT_to_SBS"
else:
user_input_label = "Enter SBS description:"
mode = "SBS_to_CPT"
# Input text box for user input
user_input = st.text_input(user_input_label, placeholder="Enter description here...")
# Button to trigger mapping
if st.button("Map"):
if not user_input.strip(): # Check if input is empty or contains only whitespace
st.error("Input box cannot be empty.")
elif validate_input(user_input):
st.warning("Please input correct description.")
else:
st.write("Please wait for a moment ...")
# Call backend function to get mapping results
try:
mapping_results = mapping_code(user_input, mode)
# Display top 5 similar sentences
st.write("Top 5 similar entries:")
for i, result in enumerate(mapping_results, 1):
st.write(f"{i}. Code: {result['Code']}, Description: {result['Description']}, Similarity Score: {float(result['Similarity Score']):.4f}")
except ValueError as e:
st.error(str(e))
if __name__ == "__main__":
main()