johko's picture
Update app.py
4e1a1dc
raw
history blame
7.04 kB
import argparse
import cv2
import numpy as np
import torch
import kornia as K
from kornia.contrib import FaceDetector, FaceDetectorResult
import gradio as gr
import face_detection
def compare_detect_faces(img: np.ndarray,
confidence_threshold,
nms_threshold,
kornia_toggle,
retina_toggle,
retina_mobile_toggle,
dsfd_toggle
):
detections = []
if kornia_toggle=="On":
kornia_detections = kornia_detect(img,
confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold)
else:
kornia_detections = None
if retina_toggle=="On":
retina_detections = retina_detect(img,
confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold)
detections.append(retina_detections)
else:
retina_detections = None
if retina_mobile_toggle=="On":
retina_mobile_detections = retina_mobilenet_detect(img,
confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold)
detections.append(retina_mobile_detections)
else:
retina_mobile_detections = None
if dsfd_toggle=="On":
dsfd_detections = dsfd_detect(img,
confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold)
detections.append(dsfd_detections)
else:
dsfd_detections = None
return kornia_detections, retina_detections, retina_mobile_detections, dsfd_detections
def scale_image(img: np.ndarray, size: int) -> np.ndarray:
h, w = img.shape[:2]
scale = 1.0 * size / w
return cv2.resize(img, (int(w * scale), int(h * scale)))
def base_detect(detector, img):
img = scale_image(img, 640)
detections = detector.detect(img)
img_vis = img.copy()
for box in detections:
img_vis = cv2.rectangle(img_vis,
box[:2].astype(int).tolist(),
box[2:4].astype(int).tolist(),
(0, 255, 0), 1)
return img_vis
def retina_detect(img, confidence_threshold, nms_threshold):
detector = face_detection.build_detector(
"RetinaNetResNet50", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold)
img_vis = base_detect(detector, img)
return img_vis
def retina_mobilenet_detect(img, confidence_threshold, nms_threshold):
detector = face_detection.build_detector(
"RetinaNetMobileNetV1", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold)
img_vis = base_detect(detector, img)
return img_vis
def dsfd_detect(img, confidence_threshold, nms_threshold):
detector = face_detection.build_detector(
"DSFDDetector", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold)
img_vis = base_detect(detector, img)
return img_vis
def kornia_detect(img, confidence_threshold, nms_threshold):
# select the device
device = torch.device('cpu')
# load the image and scale
img_raw = scale_image(img, 400)
# preprocess
img = K.image_to_tensor(img_raw, keepdim=False).to(device)
img = K.color.bgr_to_rgb(img.float())
# create the detector and find the faces !
face_detection = FaceDetector(confidence_threshold=confidence_threshold,
nms_threshold=nms_threshold).to(device)
with torch.no_grad():
dets = face_detection(img)
dets = [FaceDetectorResult(o) for o in dets[0]]
# show image
img_vis = img_raw.copy()
for b in dets:
# draw face bounding box
img_vis = cv2.rectangle(img_vis,
b.top_left.int().tolist(),
b.bottom_right.int().tolist(),
(0, 255, 0),
1)
return img_vis
input_image = gr.components.Image()
image_kornia = gr.components.Image(label="Kornia YuNet")
image_retina = gr.components.Image(label="RetinaFace")
image_retina_mobile = gr.components.Image(label="Retina Mobilenet")
image_dsfd = gr.components.Image(label="DSFD")
confidence_slider = gr.components.Slider(minimum=0.1, maximum=0.95, value=0.5, step=0.05, label="Confidence Threshold")
nms_slider = gr.components.Slider(minimum=0.1, maximum=0.95, value=0.3, step=0.05, label="Non Maximum Supression (NMS) Threshold")
kornia_radio = gr.Radio(["On", "Off"], value="On", label="Kornia YuNet")
retinanet_radio = gr.Radio(["On", "Off"], value="On", label="RetinaFace")
retina_mobile_radio = gr.Radio(["On", "Off"], value="On", label="Retina Mobilenets")
dsfd_radio = gr.Radio(["On", "Off"], value="On", label="DSFD")
#methods_dropdown = gr.components.Dropdown(["Kornia YuNet", "RetinaFace", "RetinaMobile", "DSFD"], value="Kornia YuNet", label="Choose a method")
description = """This space let's you compare different face detection algorithms, based on Convolutional Neural Networks (CNNs).
The models used here are:
* Kornia YuNet: High Speed. Using the [Kornia Face Detection](https://kornia.readthedocs.io/en/latest/applications/face_detection.html) implementation
* RetinaFace: High Accuracy. Using the [RetinaFace](https://arxiv.org/pdf/1905.00641.pdf) implementation with ResNet50 backbone from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference)
* RetinaMobileNet: Mid Speed, Mid Accuracy. RetinaFace with a MobileNetV1 backbone, also from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference)
* DSFD: High Accuracy. [Dual Shot Face Detector](http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_DSFD_Dual_Shot_Face_Detector_CVPR_2019_paper.pdf) from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference) as well.
"""
compare_iface = gr.Interface(
fn=compare_detect_faces,
inputs=[input_image, confidence_slider, nms_slider, kornia_radio, retinanet_radio, retina_mobile_radio, dsfd_radio],#, size_slider, neighbour_slider, scale_slider],
outputs=[image_kornia, image_retina, image_retina_mobile, image_dsfd],
examples=[["data/50_Celebration_Or_Party_birthdayparty_50_25.jpg", 0.5, 0.3, "On", "On", "On", "On"],
["data/12_Group_Group_12_Group_Group_12_39.jpg", 0.5, 0.3, "On", "On", "On", "On"],
["data/31_Waiter_Waitress_Waiter_Waitress_31_55.jpg", 0.5, 0.3, "On", "On", "On", "On"],
["data/12_Group_Group_12_Group_Group_12_283.jpg", 0.5, 0.3, "On", "On", "On", "On"]],
title="Face Detections",
description=description
).launch()