Spaces:
Runtime error
Runtime error
import argparse | |
import cv2 | |
import numpy as np | |
import torch | |
import kornia as K | |
from kornia.contrib import FaceDetector, FaceDetectorResult | |
import gradio as gr | |
import face_detection | |
def compare_detect_faces(img: np.ndarray, | |
confidence_threshold, | |
nms_threshold, | |
kornia_toggle, | |
retina_toggle, | |
retina_mobile_toggle, | |
dsfd_toggle | |
): | |
detections = [] | |
if kornia_toggle=="On": | |
kornia_detections = kornia_detect(img, | |
confidence_threshold=confidence_threshold, | |
nms_threshold=nms_threshold) | |
else: | |
kornia_detections = None | |
if retina_toggle=="On": | |
retina_detections = retina_detect(img, | |
confidence_threshold=confidence_threshold, | |
nms_threshold=nms_threshold) | |
detections.append(retina_detections) | |
else: | |
retina_detections = None | |
if retina_mobile_toggle=="On": | |
retina_mobile_detections = retina_mobilenet_detect(img, | |
confidence_threshold=confidence_threshold, | |
nms_threshold=nms_threshold) | |
detections.append(retina_mobile_detections) | |
else: | |
retina_mobile_detections = None | |
if dsfd_toggle=="On": | |
dsfd_detections = dsfd_detect(img, | |
confidence_threshold=confidence_threshold, | |
nms_threshold=nms_threshold) | |
detections.append(dsfd_detections) | |
else: | |
dsfd_detections = None | |
return kornia_detections, retina_detections, retina_mobile_detections, dsfd_detections | |
def scale_image(img: np.ndarray, size: int) -> np.ndarray: | |
h, w = img.shape[:2] | |
scale = 1.0 * size / w | |
return cv2.resize(img, (int(w * scale), int(h * scale))) | |
def base_detect(detector, img): | |
img = scale_image(img, 400) | |
detections = detector.detect(img) | |
img_vis = img.copy() | |
for box in detections: | |
img_vis = cv2.rectangle(img_vis, | |
box[:2].astype(int).tolist(), | |
box[2:4].astype(int).tolist(), | |
(0, 255, 0), 1) | |
return img_vis | |
def retina_detect(img, confidence_threshold, nms_threshold): | |
detector = face_detection.build_detector( | |
"RetinaNetResNet50", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold) | |
img_vis = base_detect(detector, img) | |
return img_vis | |
def retina_mobilenet_detect(img, confidence_threshold, nms_threshold): | |
detector = face_detection.build_detector( | |
"RetinaNetMobileNetV1", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold) | |
img_vis = base_detect(detector, img) | |
return img_vis | |
def dsfd_detect(img, confidence_threshold, nms_threshold): | |
detector = face_detection.build_detector( | |
"DSFDDetector", confidence_threshold=confidence_threshold, nms_iou_threshold=nms_threshold) | |
img_vis = base_detect(detector, img) | |
return img_vis | |
def kornia_detect(img, confidence_threshold, nms_threshold): | |
# select the device | |
device = torch.device('cpu') | |
# load the image and scale | |
img_raw = scale_image(img, 400) | |
# preprocess | |
img = K.image_to_tensor(img_raw, keepdim=False).to(device) | |
img = K.color.bgr_to_rgb(img.float()) | |
# create the detector and find the faces ! | |
face_detection = FaceDetector(confidence_threshold=confidence_threshold, | |
nms_threshold=nms_threshold).to(device) | |
with torch.no_grad(): | |
dets = face_detection(img) | |
dets = [FaceDetectorResult(o) for o in dets] | |
# show image | |
img_vis = img_raw.copy() | |
for b in dets: | |
# draw face bounding box | |
img_vis = cv2.rectangle(img_vis, | |
b.top_left.int().tolist(), | |
b.bottom_right.int().tolist(), | |
(0, 255, 0), | |
1) | |
return img_vis | |
input_image = gr.components.Image() | |
image_kornia = gr.components.Image(label="Kornia YuNet") | |
image_retina = gr.components.Image(label="RetinaFace") | |
image_retina_mobile = gr.components.Image(label="Retina Mobilenet") | |
image_dsfd = gr.components.Image(label="DSFD") | |
confidence_slider = gr.components.Slider(minimum=0.1, maximum=0.95, value=0.5, step=0.05, label="Confidence Threshold") | |
nms_slider = gr.components.Slider(minimum=0.1, maximum=0.95, value=0.3, step=0.05, label="Non Maximum Supression (NMS) Threshold") | |
kornia_radio = gr.Radio(["On", "Off"], value="On", label="Kornia YuNet") | |
retinanet_radio = gr.Radio(["On", "Off"], value="On", label="RetinaFace") | |
retina_mobile_radio = gr.Radio(["On", "Off"], value="On", label="Retina Mobilenets") | |
dsfd_radio = gr.Radio(["On", "Off"], value="On", label="DSFD") | |
#methods_dropdown = gr.components.Dropdown(["Kornia YuNet", "RetinaFace", "RetinaMobile", "DSFD"], value="Kornia YuNet", label="Choose a method") | |
description = """This space let's you compare different face detection algorithms, based on Convolutional Neural Networks (CNNs). | |
The models used here are: | |
* Kornia YuNet: High Speed. Using the [Kornia Face Detection](https://kornia.readthedocs.io/en/latest/applications/face_detection.html) implementation | |
* RetinaFace: High Accuracy. Using the [RetinaFace](https://arxiv.org/pdf/1905.00641.pdf) implementation with ResNet50 backbone from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference) | |
* RetinaMobileNet: Mid Speed, Mid Accuracy. RetinaFace with a MobileNetV1 backbone, also from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference) | |
* DSFD: High Accuracy. [Dual Shot Face Detector](http://openaccess.thecvf.com/content_CVPR_2019/papers/Li_DSFD_Dual_Shot_Face_Detector_CVPR_2019_paper.pdf) from the [face-detection library](https://github.com/hukkelas/DSFD-Pytorch-Inference) as well. | |
""" | |
compare_iface = gr.Interface( | |
fn=compare_detect_faces, | |
inputs=[input_image, confidence_slider, nms_slider, kornia_radio, retinanet_radio, retina_mobile_radio, dsfd_radio],#, size_slider, neighbour_slider, scale_slider], | |
outputs=[image_kornia, image_retina, image_retina_mobile, image_dsfd], | |
examples=[["data/9_Press_Conference_Press_Conference_9_86.jpg", 0.5, 0.3, "On", "On", "On", "On"], | |
["data/12_Group_Group_12_Group_Group_12_39.jpg", 0.5, 0.3, "On", "On", "On", "On"], | |
["data/31_Waiter_Waitress_Waiter_Waitress_31_55.jpg", 0.5, 0.3, "On", "On", "On", "On"]], | |
title="Face Detections", | |
description=description | |
).launch() |