Johannes commited on
Commit
b713355
Β·
1 Parent(s): 969d055
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: Face Detection Cnn
3
- emoji: πŸ“ˆ
4
  colorFrom: yellow
5
  colorTo: red
6
  sdk: gradio
 
1
  ---
2
  title: Face Detection Cnn
3
+ emoji: πŸ‘±
4
  colorFrom: yellow
5
  colorTo: red
6
  sdk: gradio
app.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+
3
+ import cv2
4
+ import numpy as np
5
+ import torch
6
+
7
+ import kornia as K
8
+ from kornia.contrib import FaceDetector, FaceDetectorResult
9
+
10
+ import gradio as gr
11
+
12
+ import face_detection
13
+
14
+
15
+ def detect_faces(img: np.ndarray, method:str):
16
+ frame = np.array(img)
17
+
18
+ kornia_detections = kornia_detect(frame)
19
+ retina_detections = retina_detect(frame)
20
+ retina_mobile_detections = retina_mobilenet_detect(frame)
21
+ dsfd_detections = dsfd_detect(frame)
22
+
23
+ # if method == "Kornia YuNet":
24
+ # re_im = kornia_detect(frame)
25
+ # elif method == "RetinaFace":
26
+ # re_im = retina_detect(frame)
27
+
28
+ return kornia_detections, retina_detections, retina_mobile_detections, dsfd_detections
29
+
30
+ def scale_image(img: np.ndarray, size: int) -> np.ndarray:
31
+ h, w = img.shape[:2]
32
+ scale = 1.0 * size / w
33
+ return cv2.resize(img, (int(w * scale), int(h * scale)))
34
+
35
+
36
+ def base_detect(detector, img):
37
+ img = scale_image(img, 400)
38
+
39
+ detections = detector.detect(img)
40
+ img_vis = img.copy()
41
+
42
+ for box in detections:
43
+ img_vis = cv2.rectangle(img_vis,
44
+ box[:2].astype(int).tolist(),
45
+ box[2:4].astype(int).tolist(),
46
+ (0, 255, 0), 1)
47
+
48
+ return img_vis
49
+
50
+
51
+ def retina_detect(img):
52
+ detector = face_detection.build_detector(
53
+ "RetinaNetResNet50", confidence_threshold=.5, nms_iou_threshold=.3)
54
+
55
+ img_vis = base_detect(detector, img)
56
+
57
+ return img_vis
58
+
59
+
60
+ def retina_mobilenet_detect(img):
61
+ detector = face_detection.build_detector(
62
+ "RetinaNetMobileNetV1", confidence_threshold=.5, nms_iou_threshold=.3)
63
+
64
+ img_vis = base_detect(detector, img)
65
+
66
+ return img_vis
67
+
68
+
69
+ def dsfd_detect(img):
70
+ detector = face_detection.build_detector(
71
+ "DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3)
72
+
73
+ img_vis = base_detect(detector, img)
74
+
75
+ return img_vis
76
+
77
+
78
+
79
+ def kornia_detect(img):
80
+ # select the device
81
+ device = torch.device('cpu')
82
+ vis_threshold = 0.6
83
+
84
+ # load the image and scale
85
+ img_raw = scale_image(img, 400)
86
+
87
+ # preprocess
88
+ img = K.image_to_tensor(img_raw, keepdim=False).to(device)
89
+ img = K.color.bgr_to_rgb(img.float())
90
+
91
+ # create the detector and find the faces !
92
+ face_detection = FaceDetector().to(device)
93
+
94
+ with torch.no_grad():
95
+ dets = face_detection(img)
96
+ dets = [FaceDetectorResult(o) for o in dets]
97
+
98
+ # show image
99
+
100
+ img_vis = img_raw.copy()
101
+
102
+ for b in dets:
103
+ if b.score < vis_threshold:
104
+ continue
105
+
106
+ # draw face bounding box
107
+ img_vis = cv2.rectangle(img_vis,
108
+ b.top_left.int().tolist(),
109
+ b.bottom_right.int().tolist(),
110
+ (0, 255, 0),
111
+ 1)
112
+
113
+ return img_vis
114
+
115
+
116
+ input_image = gr.components.Image()
117
+
118
+ image_kornia = gr.components.Image(label="Kornia YuNet")
119
+ image_retina = gr.components.Image(label="RetinaFace")
120
+ image_retina_mobile = gr.components.Image(label="Retina Mobilenet")
121
+ image_dsfd = gr.components.Image(label="DSFD")
122
+
123
+
124
+ confidence_slider = gr.components.Slider(minimum=0.1, maximum=0.9, value=0.5, label="Confidence Threshold")
125
+ nms_slider = gr.components.Slider(minimum=0.1, maximum=0.9, value=0.5, label="Min Number of Neighbours")
126
+ # scale_slider = gr.components.Slider(minimum=1.1, maximum=2.0, value=1.3, step=0.1, label="Scale Factor")
127
+ # classifier_radio = gr.components.Radio(s)
128
+
129
+ methods_dropdown = gr.components.Dropdown(["Kornia YuNet", "RetinaFace", "RetinaMobile", "DSFD"], value="Kornia YuNet", label="Choose a method")
130
+
131
+ description = """Face Detection"""
132
+
133
+
134
+ Iface = gr.Interface(
135
+ fn=detect_faces,
136
+ inputs=[input_image, methods_dropdown],#, size_slider, neighbour_slider, scale_slider],
137
+ outputs=[image_kornia, image_retina, image_retina_mobile, image_dsfd],
138
+ examples=[["data/9_Press_Conference_Press_Conference_9_86.jpg"], ["data/12_Group_Group_12_Group_Group_12_39.jpg"], ["data/31_Waiter_Waitress_Waiter_Waitress_31_55.jpg"]],
139
+ title="Face Detection",
140
+ ).launch()
data/12_Group_Group_12_Group_Group_12_39.jpg ADDED
data/31_Waiter_Waitress_Waiter_Waitress_31_55.jpg ADDED
data/9_Press_Conference_Press_Conference_9_86.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ kornia
2
+ opencv-python
3
+ git+https://github.com/hukkelas/DSFD-Pytorch-Inference.git