Spaces:
Runtime error
Runtime error
File size: 10,952 Bytes
079ac07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import tensorflow as tf
from tensorflow.keras import layers, initializers, models
def conv(x, filters, kernel_size, downsampling=False, activation='leaky', batch_norm=True):
def mish(x):
return x * tf.math.tanh(tf.math.softplus(x))
if downsampling:
x = layers.ZeroPadding2D(padding=((1, 0), (1, 0)))(x) # top & left padding
padding = 'valid'
strides = 2
else:
padding = 'same'
strides = 1
x = layers.Conv2D(filters,
kernel_size,
strides=strides,
padding=padding,
use_bias=not batch_norm,
# kernel_regularizer=regularizers.l2(0.0005),
kernel_initializer=initializers.RandomNormal(mean=0.0, stddev=0.01),
# bias_initializer=initializers.Zeros()
)(x)
if batch_norm:
x = layers.BatchNormalization()(x)
if activation == 'mish':
x = mish(x)
elif activation == 'leaky':
x = layers.LeakyReLU(alpha=0.1)(x)
return x
def residual_block(x, filters1, filters2, activation='leaky'):
"""
:param x: input tensor
:param filters1: num of filter for 1x1 conv
:param filters2: num of filter for 3x3 conv
:param activation: default activation function: leaky relu
:return:
"""
y = conv(x, filters1, kernel_size=1, activation=activation)
y = conv(y, filters2, kernel_size=3, activation=activation)
return layers.Add()([x, y])
def csp_block(x, residual_out, repeat, residual_bottleneck=False):
"""
Cross Stage Partial Network (CSPNet)
transition_bottleneck_dims: 1x1 bottleneck
output_dims: 3x3
:param x:
:param residual_out:
:param repeat:
:param residual_bottleneck:
:return:
"""
route = x
route = conv(route, residual_out, 1, activation="mish")
x = conv(x, residual_out, 1, activation="mish")
for i in range(repeat):
x = residual_block(x,
residual_out // 2 if residual_bottleneck else residual_out,
residual_out,
activation="mish")
x = conv(x, residual_out, 1, activation="mish")
x = layers.Concatenate()([x, route])
return x
def darknet53(x):
x = conv(x, 32, 3)
x = conv(x, 64, 3, downsampling=True)
for i in range(1):
x = residual_block(x, 32, 64)
x = conv(x, 128, 3, downsampling=True)
for i in range(2):
x = residual_block(x, 64, 128)
x = conv(x, 256, 3, downsampling=True)
for i in range(8):
x = residual_block(x, 128, 256)
route_1 = x
x = conv(x, 512, 3, downsampling=True)
for i in range(8):
x = residual_block(x, 256, 512)
route_2 = x
x = conv(x, 1024, 3, downsampling=True)
for i in range(4):
x = residual_block(x, 512, 1024)
return route_1, route_2, x
def cspdarknet53(input):
x = conv(input, 32, 3)
x = conv(x, 64, 3, downsampling=True)
x = csp_block(x, residual_out=64, repeat=1, residual_bottleneck=True)
x = conv(x, 64, 1, activation='mish')
x = conv(x, 128, 3, activation='mish', downsampling=True)
x = csp_block(x, residual_out=64, repeat=2)
x = conv(x, 128, 1, activation='mish')
x = conv(x, 256, 3, activation='mish', downsampling=True)
x = csp_block(x, residual_out=128, repeat=8)
x = conv(x, 256, 1, activation='mish')
route0 = x
x = conv(x, 512, 3, activation='mish', downsampling=True)
x = csp_block(x, residual_out=256, repeat=8)
x = conv(x, 512, 1, activation='mish')
route1 = x
x = conv(x, 1024, 3, activation='mish', downsampling=True)
x = csp_block(x, residual_out=512, repeat=4)
x = conv(x, 1024, 1, activation="mish")
x = conv(x, 512, 1)
x = conv(x, 1024, 3)
x = conv(x, 512, 1)
x = layers.Concatenate()([layers.MaxPooling2D(pool_size=13, strides=1, padding='same')(x),
layers.MaxPooling2D(pool_size=9, strides=1, padding='same')(x),
layers.MaxPooling2D(pool_size=5, strides=1, padding='same')(x),
x
])
x = conv(x, 512, 1)
x = conv(x, 1024, 3)
route2 = conv(x, 512, 1)
return models.Model(input, [route0, route1, route2])
def yolov4_neck(x, num_classes):
backbone_model = cspdarknet53(x)
route0, route1, route2 = backbone_model.output
route_input = route2
x = conv(route2, 256, 1)
x = layers.UpSampling2D()(x)
route1 = conv(route1, 256, 1)
x = layers.Concatenate()([route1, x])
x = conv(x, 256, 1)
x = conv(x, 512, 3)
x = conv(x, 256, 1)
x = conv(x, 512, 3)
x = conv(x, 256, 1)
route1 = x
x = conv(x, 128, 1)
x = layers.UpSampling2D()(x)
route0 = conv(route0, 128, 1)
x = layers.Concatenate()([route0, x])
x = conv(x, 128, 1)
x = conv(x, 256, 3)
x = conv(x, 128, 1)
x = conv(x, 256, 3)
x = conv(x, 128, 1)
route0 = x
x = conv(x, 256, 3)
conv_sbbox = conv(x, 3 * (num_classes + 5), 1, activation=None, batch_norm=False)
x = conv(route0, 256, 3, downsampling=True)
x = layers.Concatenate()([x, route1])
x = conv(x, 256, 1)
x = conv(x, 512, 3)
x = conv(x, 256, 1)
x = conv(x, 512, 3)
x = conv(x, 256, 1)
route1 = x
x = conv(x, 512, 3)
conv_mbbox = conv(x, 3 * (num_classes + 5), 1, activation=None, batch_norm=False)
x = conv(route1, 512, 3, downsampling=True)
x = layers.Concatenate()([x, route_input])
x = conv(x, 512, 1)
x = conv(x, 1024, 3)
x = conv(x, 512, 1)
x = conv(x, 1024, 3)
x = conv(x, 512, 1)
x = conv(x, 1024, 3)
conv_lbbox = conv(x, 3 * (num_classes + 5), 1, activation=None, batch_norm=False)
return [conv_sbbox, conv_mbbox, conv_lbbox]
def yolov4_head(yolo_neck_outputs, classes, anchors, xyscale):
bbox0, object_probability0, class_probabilities0, pred_box0 = get_boxes(yolo_neck_outputs[0],
anchors=anchors[0, :, :], classes=classes,
grid_size=52, strides=8,
xyscale=xyscale[0])
bbox1, object_probability1, class_probabilities1, pred_box1 = get_boxes(yolo_neck_outputs[1],
anchors=anchors[1, :, :], classes=classes,
grid_size=26, strides=16,
xyscale=xyscale[1])
bbox2, object_probability2, class_probabilities2, pred_box2 = get_boxes(yolo_neck_outputs[2],
anchors=anchors[2, :, :], classes=classes,
grid_size=13, strides=32,
xyscale=xyscale[2])
x = [bbox0, object_probability0, class_probabilities0, pred_box0,
bbox1, object_probability1, class_probabilities1, pred_box1,
bbox2, object_probability2, class_probabilities2, pred_box2]
return x
def get_boxes(pred, anchors, classes, grid_size, strides, xyscale):
"""
:param pred:
:param anchors:
:param classes:
:param grid_size:
:param strides:
:param xyscale:
:return:
"""
pred = tf.reshape(pred,
(tf.shape(pred)[0],
grid_size,
grid_size,
3,
5 + classes)) # (batch_size, grid_size, grid_size, 3, 5+classes)
box_xy, box_wh, obj_prob, class_prob = tf.split(
pred, (2, 2, 1, classes), axis=-1
) # (?, 52, 52, 3, 2) (?, 52, 52, 3, 2) (?, 52, 52, 3, 1) (?, 52, 52, 3, 80)
box_xy = tf.sigmoid(box_xy) # (?, 52, 52, 3, 2)
obj_prob = tf.sigmoid(obj_prob) # (?, 52, 52, 3, 1)
class_prob = tf.sigmoid(class_prob) # (?, 52, 52, 3, 80)
pred_box_xywh = tf.concat((box_xy, box_wh), axis=-1) # (?, 52, 52, 3, 4)
grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size)) # (52, 52) (52, 52)
grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) # (52, 52, 1, 2)
grid = tf.cast(grid, dtype=tf.float32)
box_xy = ((box_xy * xyscale) - 0.5 * (xyscale - 1) + grid) * strides # (?, 52, 52, 1, 4)
box_wh = tf.exp(box_wh) * anchors # (?, 52, 52, 3, 2)
box_x1y1 = box_xy - box_wh / 2 # (?, 52, 52, 3, 2)
box_x2y2 = box_xy + box_wh / 2 # (?, 52, 52, 3, 2)
pred_box_x1y1x2y2 = tf.concat([box_x1y1, box_x2y2], axis=-1) # (?, 52, 52, 3, 4)
return pred_box_x1y1x2y2, obj_prob, class_prob, pred_box_xywh
# pred_box_x1y1x2y2: absolute xy value
def nms(model_ouputs, input_shape, num_class, iou_threshold=0.413, score_threshold=0.3):
"""
Apply Non-Maximum suppression
ref: https://www.tensorflow.org/api_docs/python/tf/image/combined_non_max_suppression
:param model_ouputs: yolo model model_ouputs
:param input_shape: size of input image
:return: nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections
"""
bs = tf.shape(model_ouputs[0])[0]
boxes = tf.zeros((bs, 0, 4))
confidence = tf.zeros((bs, 0, 1))
class_probabilities = tf.zeros((bs, 0, num_class))
for output_idx in range(0, len(model_ouputs), 4):
output_xy = model_ouputs[output_idx]
output_conf = model_ouputs[output_idx + 1]
output_classes = model_ouputs[output_idx + 2]
boxes = tf.concat([boxes, tf.reshape(output_xy, (bs, -1, 4))], axis=1)
confidence = tf.concat([confidence, tf.reshape(output_conf, (bs, -1, 1))], axis=1)
class_probabilities = tf.concat([class_probabilities, tf.reshape(output_classes, (bs, -1, num_class))], axis=1)
scores = confidence * class_probabilities
boxes = tf.expand_dims(boxes, axis=-2)
boxes = boxes / input_shape[0] # box normalization: relative img size
print(f'nms iou: {iou_threshold} score: {score_threshold}')
(nmsed_boxes, # [bs, max_detections, 4]
nmsed_scores, # [bs, max_detections]
nmsed_classes, # [bs, max_detections]
valid_detections # [batch_size]
) = tf.image.combined_non_max_suppression(
boxes=boxes, # y1x1, y2x2 [0~1]
scores=scores,
max_output_size_per_class=100,
max_total_size=100, # max_boxes: Maximum nmsed_boxes in a single img.
iou_threshold=iou_threshold, # iou_threshold: Minimum overlap that counts as a valid detection.
score_threshold=score_threshold, # # Minimum confidence that counts as a valid detection.
)
return nmsed_boxes, nmsed_scores, nmsed_classes, valid_detections |