Spaces:
Runtime error
Runtime error
File size: 25,151 Bytes
079ac07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import numpy as np
import cv2
import os
import json
from tqdm import tqdm
from glob import glob
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers, models, optimizers
from custom_layers import yolov4_neck, yolov4_head, nms
from utils import load_weights, get_detection_data, draw_bbox, voc_ap, draw_plot_func, read_txt_to_list
from config import yolo_config
from loss import yolo_loss
class Yolov4(object):
def __init__(self,
weight_path=None,
class_name_path='coco_classes.txt',
config=yolo_config,
):
assert config['img_size'][0] == config['img_size'][1], 'not support yet'
assert config['img_size'][0] % config['strides'][-1] == 0, 'must be a multiple of last stride'
self.class_names = [line.strip() for line in open(class_name_path).readlines()]
self.img_size = yolo_config['img_size']
self.num_classes = len(self.class_names)
self.weight_path = weight_path
self.anchors = np.array(yolo_config['anchors']).reshape((3, 3, 2))
self.xyscale = yolo_config['xyscale']
self.strides = yolo_config['strides']
self.output_sizes = [self.img_size[0] // s for s in self.strides]
self.class_color = {name: list(np.random.random(size=3)*255) for name in self.class_names}
# Training
self.max_boxes = yolo_config['max_boxes']
self.iou_loss_thresh = yolo_config['iou_loss_thresh']
self.config = yolo_config
assert self.num_classes > 0, 'no classes detected!'
tf.keras.backend.clear_session()
if yolo_config['num_gpu'] > 1:
mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
self.build_model(load_pretrained=True if self.weight_path else False)
else:
self.build_model(load_pretrained=True if self.weight_path else False)
def build_model(self, load_pretrained=True):
# core yolo model
input_layer = layers.Input(self.img_size)
yolov4_output = yolov4_neck(input_layer, self.num_classes)
self.yolo_model = models.Model(input_layer, yolov4_output)
# Build training model
y_true = [
layers.Input(name='input_2', shape=(52, 52, 3, (self.num_classes + 5))), # label small boxes
layers.Input(name='input_3', shape=(26, 26, 3, (self.num_classes + 5))), # label medium boxes
layers.Input(name='input_4', shape=(13, 13, 3, (self.num_classes + 5))), # label large boxes
layers.Input(name='input_5', shape=(self.max_boxes, 4)), # true bboxes
]
loss_list = tf.keras.layers.Lambda(yolo_loss, name='yolo_loss',
arguments={'num_classes': self.num_classes,
'iou_loss_thresh': self.iou_loss_thresh,
'anchors': self.anchors})([*self.yolo_model.output, *y_true])
self.training_model = models.Model([self.yolo_model.input, *y_true], loss_list)
# Build inference model
yolov4_output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale)
# output: [boxes, scores, classes, valid_detections]
self.inference_model = models.Model(input_layer,
nms(yolov4_output, self.img_size, self.num_classes,
iou_threshold=self.config['iou_threshold'],
score_threshold=self.config['score_threshold']))
if load_pretrained and self.weight_path and self.weight_path.endswith('.weights'):
if self.weight_path.endswith('.weights'):
load_weights(self.yolo_model, self.weight_path)
print(f'load from {self.weight_path}')
elif self.weight_path.endswith('.h5'):
self.training_model.load_weights(self.weight_path)
print(f'load from {self.weight_path}')
self.training_model.compile(optimizer=optimizers.Adam(lr=1e-3),
loss={'yolo_loss': lambda y_true, y_pred: y_pred})
def load_model(self, path):
self.yolo_model = models.load_model(path, compile=False)
yolov4_output = yolov4_head(self.yolo_model.output, self.num_classes, self.anchors, self.xyscale)
self.inference_model = models.Model(self.yolo_model.input,
nms(yolov4_output, self.img_size, self.num_classes)) # [boxes, scores, classes, valid_detections]
def save_model(self, path):
self.yolo_model.save(path)
def preprocess_img(self, img):
img = cv2.resize(img, self.img_size[:2])
img = img / 255.
return img
def fit(self, train_data_gen, epochs, val_data_gen=None, initial_epoch=0, callbacks=None):
self.training_model.fit(train_data_gen,
steps_per_epoch=len(train_data_gen),
validation_data=val_data_gen,
validation_steps=len(val_data_gen),
epochs=epochs,
callbacks=callbacks,
initial_epoch=initial_epoch)
# raw_img: RGB
def predict_img(self, raw_img, random_color=True, plot_img=True, figsize=(10, 10), show_text=True, return_output=True):
print('img shape: ', raw_img.shape)
img = self.preprocess_img(raw_img)
imgs = np.expand_dims(img, axis=0)
pred_output = self.inference_model.predict(imgs)
detections = get_detection_data(img=raw_img,
model_outputs=pred_output,
class_names=self.class_names)
output_img = draw_bbox(raw_img, detections, cmap=self.class_color, random_color=random_color, figsize=figsize,
show_text=show_text, show_img=False)
if return_output:
return output_img, detections
else:
return detections
def predict(self, img_path, random_color=True, plot_img=True, figsize=(10, 10), show_text=True):
raw_img = img_path
return self.predict_img(raw_img, random_color, plot_img, figsize, show_text)
def export_gt(self, annotation_path, gt_folder_path):
with open(annotation_path) as file:
for line in file:
line = line.split(' ')
filename = line[0].split(os.sep)[-1].split('.')[0]
objs = line[1:]
# export txt file
with open(os.path.join(gt_folder_path, filename + '.txt'), 'w') as output_file:
for obj in objs:
x_min, y_min, x_max, y_max, class_id = [float(o) for o in obj.strip().split(',')]
output_file.write(f'{self.class_names[int(class_id)]} {x_min} {y_min} {x_max} {y_max}\n')
def export_prediction(self, annotation_path, pred_folder_path, img_folder_path, bs=2):
with open(annotation_path) as file:
img_paths = [os.path.join(img_folder_path, line.split(' ')[0].split(os.sep)[-1]) for line in file]
# print(img_paths[:20])
for batch_idx in tqdm(range(0, len(img_paths), bs)):
# print(len(img_paths), batch_idx, batch_idx*bs, (batch_idx+1)*bs)
paths = img_paths[batch_idx:batch_idx+bs]
# print(paths)
# read and process img
imgs = np.zeros((len(paths), *self.img_size))
raw_img_shapes = []
for j, path in enumerate(paths):
img = cv2.imread(path)
raw_img_shapes.append(img.shape)
img = self.preprocess_img(img)
imgs[j] = img
# process batch output
b_boxes, b_scores, b_classes, b_valid_detections = self.inference_model.predict(imgs)
for k in range(len(paths)):
num_boxes = b_valid_detections[k]
raw_img_shape = raw_img_shapes[k]
boxes = b_boxes[k, :num_boxes]
classes = b_classes[k, :num_boxes]
scores = b_scores[k, :num_boxes]
# print(raw_img_shape)
boxes[:, [0, 2]] = (boxes[:, [0, 2]] * raw_img_shape[1]) # w
boxes[:, [1, 3]] = (boxes[:, [1, 3]] * raw_img_shape[0]) # h
cls_names = [self.class_names[int(c)] for c in classes]
# print(raw_img_shape, boxes.astype(int), cls_names, scores)
img_path = paths[k]
filename = img_path.split(os.sep)[-1].split('.')[0]
# print(filename)
output_path = os.path.join(pred_folder_path, filename+'.txt')
with open(output_path, 'w') as pred_file:
for box_idx in range(num_boxes):
b = boxes[box_idx]
pred_file.write(f'{cls_names[box_idx]} {scores[box_idx]} {b[0]} {b[1]} {b[2]} {b[3]}\n')
def eval_map(self, gt_folder_path, pred_folder_path, temp_json_folder_path, output_files_path):
"""Process Gt"""
ground_truth_files_list = glob(gt_folder_path + '/*.txt')
assert len(ground_truth_files_list) > 0, 'no ground truth file'
ground_truth_files_list.sort()
# dictionary with counter per class
gt_counter_per_class = {}
counter_images_per_class = {}
gt_files = []
for txt_file in ground_truth_files_list:
file_id = txt_file.split(".txt", 1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
# check if there is a correspondent detection-results file
temp_path = os.path.join(pred_folder_path, (file_id + ".txt"))
assert os.path.exists(temp_path), "Error. File not found: {}\n".format(temp_path)
lines_list = read_txt_to_list(txt_file)
# create ground-truth dictionary
bounding_boxes = []
is_difficult = False
already_seen_classes = []
for line in lines_list:
class_name, left, top, right, bottom = line.split()
# check if class is in the ignore list, if yes skip
bbox = left + " " + top + " " + right + " " + bottom
bounding_boxes.append({"class_name": class_name, "bbox": bbox, "used": False})
# count that object
if class_name in gt_counter_per_class:
gt_counter_per_class[class_name] += 1
else:
# if class didn't exist yet
gt_counter_per_class[class_name] = 1
if class_name not in already_seen_classes:
if class_name in counter_images_per_class:
counter_images_per_class[class_name] += 1
else:
# if class didn't exist yet
counter_images_per_class[class_name] = 1
already_seen_classes.append(class_name)
# dump bounding_boxes into a ".json" file
new_temp_file = os.path.join(temp_json_folder_path, file_id+"_ground_truth.json") #TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
gt_files.append(new_temp_file)
with open(new_temp_file, 'w') as outfile:
json.dump(bounding_boxes, outfile)
gt_classes = list(gt_counter_per_class.keys())
# let's sort the classes alphabetically
gt_classes = sorted(gt_classes)
n_classes = len(gt_classes)
print(gt_classes, gt_counter_per_class)
"""Process prediction"""
dr_files_list = sorted(glob(os.path.join(pred_folder_path, '*.txt')))
for class_index, class_name in enumerate(gt_classes):
bounding_boxes = []
for txt_file in dr_files_list:
# the first time it checks if all the corresponding ground-truth files exist
file_id = txt_file.split(".txt", 1)[0]
file_id = os.path.basename(os.path.normpath(file_id))
temp_path = os.path.join(gt_folder_path, (file_id + ".txt"))
if class_index == 0:
if not os.path.exists(temp_path):
error_msg = f"Error. File not found: {temp_path}\n"
print(error_msg)
lines = read_txt_to_list(txt_file)
for line in lines:
try:
tmp_class_name, confidence, left, top, right, bottom = line.split()
except ValueError:
error_msg = f"""Error: File {txt_file} in the wrong format.\n
Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n
Received: {line} \n"""
print(error_msg)
if tmp_class_name == class_name:
# print("match")
bbox = left + " " + top + " " + right + " " + bottom
bounding_boxes.append({"confidence": confidence, "file_id": file_id, "bbox": bbox})
# sort detection-results by decreasing confidence
bounding_boxes.sort(key=lambda x: float(x['confidence']), reverse=True)
with open(temp_json_folder_path + "/" + class_name + "_dr.json", 'w') as outfile:
json.dump(bounding_boxes, outfile)
"""
Calculate the AP for each class
"""
sum_AP = 0.0
ap_dictionary = {}
# open file to store the output
with open(output_files_path + "/output.txt", 'w') as output_file:
output_file.write("# AP and precision/recall per class\n")
count_true_positives = {}
for class_index, class_name in enumerate(gt_classes):
count_true_positives[class_name] = 0
"""
Load detection-results of that class
"""
dr_file = temp_json_folder_path + "/" + class_name + "_dr.json"
dr_data = json.load(open(dr_file))
"""
Assign detection-results to ground-truth objects
"""
nd = len(dr_data)
tp = [0] * nd # creates an array of zeros of size nd
fp = [0] * nd
for idx, detection in enumerate(dr_data):
file_id = detection["file_id"]
gt_file = temp_json_folder_path + "/" + file_id + "_ground_truth.json"
ground_truth_data = json.load(open(gt_file))
ovmax = -1
gt_match = -1
# load detected object bounding-box
bb = [float(x) for x in detection["bbox"].split()]
for obj in ground_truth_data:
# look for a class_name match
if obj["class_name"] == class_name:
bbgt = [float(x) for x in obj["bbox"].split()]
bi = [max(bb[0], bbgt[0]), max(bb[1], bbgt[1]), min(bb[2], bbgt[2]), min(bb[3], bbgt[3])]
iw = bi[2] - bi[0] + 1
ih = bi[3] - bi[1] + 1
if iw > 0 and ih > 0:
# compute overlap (IoU) = area of intersection / area of union
ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + \
(bbgt[2] - bbgt[0]+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
ov = iw * ih / ua
if ov > ovmax:
ovmax = ov
gt_match = obj
min_overlap = 0.5
if ovmax >= min_overlap:
# if "difficult" not in gt_match:
if not bool(gt_match["used"]):
# true positive
tp[idx] = 1
gt_match["used"] = True
count_true_positives[class_name] += 1
# update the ".json" file
with open(gt_file, 'w') as f:
f.write(json.dumps(ground_truth_data))
else:
# false positive (multiple detection)
fp[idx] = 1
else:
fp[idx] = 1
# compute precision/recall
cumsum = 0
for idx, val in enumerate(fp):
fp[idx] += cumsum
cumsum += val
print('fp ', cumsum)
cumsum = 0
for idx, val in enumerate(tp):
tp[idx] += cumsum
cumsum += val
print('tp ', cumsum)
rec = tp[:]
for idx, val in enumerate(tp):
rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name]
print('recall ', cumsum)
prec = tp[:]
for idx, val in enumerate(tp):
prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx])
print('prec ', cumsum)
ap, mrec, mprec = voc_ap(rec[:], prec[:])
sum_AP += ap
text = "{0:.2f}%".format(
ap * 100) + " = " + class_name + " AP " # class_name + " AP = {0:.2f}%".format(ap*100)
print(text)
ap_dictionary[class_name] = ap
n_images = counter_images_per_class[class_name]
# lamr, mr, fppi = log_average_miss_rate(np.array(prec), np.array(rec), n_images)
# lamr_dictionary[class_name] = lamr
"""
Draw plot
"""
if True:
plt.plot(rec, prec, '-o')
# add a new penultimate point to the list (mrec[-2], 0.0)
# since the last line segment (and respective area) do not affect the AP value
area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
# set window title
fig = plt.gcf() # gcf - get current figure
fig.canvas.set_window_title('AP ' + class_name)
# set plot title
plt.title('class: ' + text)
# plt.suptitle('This is a somewhat long figure title', fontsize=16)
# set axis titles
plt.xlabel('Recall')
plt.ylabel('Precision')
# optional - set axes
axes = plt.gca() # gca - get current axes
axes.set_xlim([0.0, 1.0])
axes.set_ylim([0.0, 1.05]) # .05 to give some extra space
# Alternative option -> wait for button to be pressed
# while not plt.waitforbuttonpress(): pass # wait for key display
# Alternative option -> normal display
plt.show()
# save the plot
# fig.savefig(output_files_path + "/classes/" + class_name + ".png")
# plt.cla() # clear axes for next plot
# if show_animation:
# cv2.destroyAllWindows()
output_file.write("\n# mAP of all classes\n")
mAP = sum_AP / n_classes
text = "mAP = {0:.2f}%".format(mAP * 100)
output_file.write(text + "\n")
print(text)
"""
Count total of detection-results
"""
# iterate through all the files
det_counter_per_class = {}
for txt_file in dr_files_list:
# get lines to list
lines_list = read_txt_to_list(txt_file)
for line in lines_list:
class_name = line.split()[0]
# check if class is in the ignore list, if yes skip
# if class_name in args.ignore:
# continue
# count that object
if class_name in det_counter_per_class:
det_counter_per_class[class_name] += 1
else:
# if class didn't exist yet
det_counter_per_class[class_name] = 1
# print(det_counter_per_class)
dr_classes = list(det_counter_per_class.keys())
"""
Plot the total number of occurences of each class in the ground-truth
"""
if True:
window_title = "ground-truth-info"
plot_title = "ground-truth\n"
plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
x_label = "Number of objects per class"
output_path = output_files_path + "/ground-truth-info.png"
to_show = False
plot_color = 'forestgreen'
draw_plot_func(
gt_counter_per_class,
n_classes,
window_title,
plot_title,
x_label,
output_path,
to_show,
plot_color,
'',
)
"""
Finish counting true positives
"""
for class_name in dr_classes:
# if class exists in detection-result but not in ground-truth then there are no true positives in that class
if class_name not in gt_classes:
count_true_positives[class_name] = 0
# print(count_true_positives)
"""
Plot the total number of occurences of each class in the "detection-results" folder
"""
if True:
window_title = "detection-results-info"
# Plot title
plot_title = "detection-results\n"
plot_title += "(" + str(len(dr_files_list)) + " files and "
count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
# end Plot title
x_label = "Number of objects per class"
output_path = output_files_path + "/detection-results-info.png"
to_show = False
plot_color = 'forestgreen'
true_p_bar = count_true_positives
draw_plot_func(
det_counter_per_class,
len(det_counter_per_class),
window_title,
plot_title,
x_label,
output_path,
to_show,
plot_color,
true_p_bar
)
"""
Draw mAP plot (Show AP's of all classes in decreasing order)
"""
if True:
window_title = "mAP"
plot_title = "mAP = {0:.2f}%".format(mAP * 100)
x_label = "Average Precision"
output_path = output_files_path + "/mAP.png"
to_show = True
plot_color = 'royalblue'
draw_plot_func(
ap_dictionary,
n_classes,
window_title,
plot_title,
x_label,
output_path,
to_show,
plot_color,
""
)
def predict_raw(self, img_path):
raw_img = cv2.imread(img_path)
print('img shape: ', raw_img.shape)
img = self.preprocess_img(raw_img)
imgs = np.expand_dims(img, axis=0)
return self.yolo_model.predict(imgs)
def predict_nonms(self, img_path, iou_threshold=0.413, score_threshold=0.1):
raw_img = cv2.imread(img_path)
print('img shape: ', raw_img.shape)
img = self.preprocess_img(raw_img)
imgs = np.expand_dims(img, axis=0)
yolov4_output = self.yolo_model.predict(imgs)
output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale)
pred_output = nms(output, self.img_size, self.num_classes, iou_threshold, score_threshold)
pred_output = [p.numpy() for p in pred_output]
detections = get_detection_data(img=raw_img,
model_outputs=pred_output,
class_names=self.class_names)
draw_bbox(raw_img, detections, cmap=self.class_color, random_color=True)
return detections
|