import tensorflow as tf import cv2 import numpy as np from glob import glob from models import Yolov4 import gradio as gr model = Yolov4(weight_path="yolov4.weights", class_name_path='coco_classes.txt') def gradio_wrapper(img): global model #print(np.shape(img)) results = model.predict(img) return results[0] demo = gr.Interface( gradio_wrapper, #gr.Image(source="webcam", streaming=True, flip=True), gr.Image(source="webcam", streaming=True, shape=(640,480)), "image", live=True ) demo.launch()