File size: 8,280 Bytes
c3c1187
 
e893d68
 
c3c1187
e893d68
 
c3c1187
e893d68
1d44212
 
 
 
f861dee
e893d68
 
f861dee
e893d68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3c1187
 
 
 
 
 
e893d68
 
c3c1187
f861dee
 
 
 
e893d68
 
f861dee
 
c3c1187
 
 
 
 
 
e893d68
c3c1187
 
 
 
f861dee
 
 
c3c1187
f861dee
e893d68
 
 
f861dee
c3c1187
 
f861dee
 
 
e893d68
 
 
c3c1187
f861dee
 
e893d68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a4227c
 
c3c1187
 
 
e893d68
 
 
 
ae1fcbd
e893d68
 
0a4227c
d8007de
0a4227c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f861dee
c3c1187
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import os
from pathlib import Path
from chainguard.blockchain_logger import BlockchainLogger
from neo4j import GraphDatabase

import sys
from os import path

sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
from .bad_query_detector import BadQueryDetector
from .query_transformer import QueryTransformer
from .document_retriver import DocumentRetriever
from .senamtic_response_generator import SemanticResponseGenerator


class DataTransformer:
    def __init__(self):
        """
        Initializes a DataTransformer with a blockchain logger instance.
        """
        self.blockchain_logger = BlockchainLogger()

    def secure_transform(self, data):
        """
        Securely transforms the input data by logging it into the blockchain.

        Args:
            data (dict): The log data or any data to be securely transformed.

        Returns:
            dict: A dictionary containing the original data, block hash, and blockchain length.
        """
        # Log the data into the blockchain
        block_details = self.blockchain_logger.log_data(data)

        # Return the block details and blockchain status
        return {
            "data": data,
            **block_details
        }

    def validate_blockchain(self):
        """
        Validates the integrity of the blockchain.

        Returns:
            bool: True if the blockchain is valid, False otherwise.
        """
        return self.blockchain_logger.is_blockchain_valid()


class Neo4jHandler:
    def __init__(self, uri, user, password):
        """
        Initializes a Neo4j handler for storing and querying relationships.
        """
        self.driver = GraphDatabase.driver(uri, auth=(user, password))

    def close(self):
        self.driver.close()

    def log_relationships(self, query, transformed_query, response, documents):
        """
        Logs the relationships between queries, responses, and documents into Neo4j.
        """
        with self.driver.session() as session:
            session.write_transaction(self._create_and_link_nodes, query, transformed_query, response, documents)

    @staticmethod
    def _create_and_link_nodes(tx, query, transformed_query, response, documents):
        # Create Query node
        tx.run("MERGE (q:Query {text: $query}) RETURN q", parameters={"query": query})
        # Create TransformedQuery node
        tx.run("MERGE (t:TransformedQuery {text: $transformed_query}) RETURN t",
               parameters={"transformed_query": transformed_query})
        # Create Response node
        tx.run("MERGE (r:Response {text: $response}) RETURN r", parameters={"response": response})

        # Link Query to TransformedQuery and Response
        tx.run(
            """
            MATCH (q:Query {text: $query}), (t:TransformedQuery {text: $transformed_query})
            MERGE (q)-[:TRANSFORMED_TO]->(t)
            """, parameters={"query": query, "transformed_query": transformed_query}
        )
        tx.run(
            """
            MATCH (q:Query {text: $query}), (r:Response {text: $response})
            MERGE (q)-[:GENERATED]->(r)
            """, parameters={"query": query, "response": response}
        )

        # Create and link Document nodes
        for doc in documents:
            tx.run("MERGE (d:Document {name: $doc}) RETURN d", parameters={"doc": doc})
            tx.run(
                """
                MATCH (q:Query {text: $query}), (d:Document {name: $doc})
                MERGE (q)-[:RETRIEVED]->(d)
                """, parameters={"query": query, "doc": doc}
            )


class DocumentSearchSystem:
    def __init__(self, neo4j_uri, neo4j_user, neo4j_password):
        """
        Initializes the DocumentSearchSystem with:
        - BadQueryDetector for identifying malicious or inappropriate queries.
        - QueryTransformer for improving or rephrasing queries.
        - DocumentRetriever for semantic document retrieval.
        - SemanticResponseGenerator for generating context-aware responses.
        - DataTransformer for blockchain logging of queries and responses.
        - Neo4jHandler for relationship logging and visualization.
        """
        self.detector = BadQueryDetector()
        self.transformer = QueryTransformer()
        self.retriever = DocumentRetriever()
        self.response_generator = SemanticResponseGenerator()
        self.data_transformer = DataTransformer()
        self.neo4j_handler = Neo4jHandler(neo4j_uri, neo4j_user, neo4j_password)

    def process_query(self, query):
        """
        Processes a user query through the following steps:
        1. Detect if the query is malicious.
        2. Transform the query if needed.
        3. Retrieve relevant documents based on the query.
        4. Generate a response using the retrieved documents.
        5. Log all stages to the blockchain and Neo4j.

        :param query: The user query as a string.
        :return: A dictionary with the status and response or error message.
        """
        if self.detector.is_bad_query(query):
            return {"status": "rejected", "message": "Query blocked due to detected malicious intent."}

        # Transform the query
        transformed_query = self.transformer.transform_query(query)

        # Log the original query to the blockchain
        self.data_transformer.secure_transform({"type": "query", "content": query})

        # Retrieve relevant documents
        retrieved_docs = self.retriever.retrieve(transformed_query)
        if not retrieved_docs:
            return {"status": "no_results", "message": "No relevant documents found for your query."}

        # Log the retrieved documents to the blockchain
        self.data_transformer.secure_transform({"type": "documents", "content": retrieved_docs})

        # Generate a response based on the retrieved documents
        response = self.response_generator.generate_response(retrieved_docs)

        # Log the response to the blockchain
        blockchain_details = self.data_transformer.secure_transform({"type": "response", "content": response})

        # Log relationships to Neo4j
        self.neo4j_handler.log_relationships(query, transformed_query, response, retrieved_docs)

        return {
            "status": "success",
            "response": response,
            "retrieved_documents": retrieved_docs,
            "blockchain_details": blockchain_details
        }

    def validate_system_integrity(self):
        """
        Validates the integrity of the blockchain.
        """
        return self.data_transformer.validate_blockchain()


def main():
    # Path to the dataset directory
    home_dir = Path(os.getenv("HOME", "/"))
    data_dir = home_dir / "data-sets/aclImdb/train"

    # Initialize system with Neo4j credentials
    system = DocumentSearchSystem(
        neo4j_uri="neo4j+s://0ca71b10.databases.neo4j.io",
        neo4j_user="neo4j",
        neo4j_password="HwGDOxyGS1-79nLeTiX5bx5ohoFSpvHCmTv8IRgt-lY"
    )

    # Load documents into the retriever
    system.retriever.load_documents()
    print("Documents successfully loaded.")

    return system


if __name__ == "__main__":
    main()

    # home_dir = Path(os.getenv("HOME", "/"))
    # data_dir = home_dir / "data-sets/aclImdb/train"
    #
    #
    # # Initialize system with Neo4j credentials
    # system = DocumentSearchSystem(
    #     neo4j_uri="neo4j+s://0ca71b10.databases.neo4j.io",
    #     neo4j_user="neo4j",
    #     neo4j_password="HwGDOxyGS1-79nLeTiX5bx5ohoFSpvHCmTv8IRgt-lY"
    # )
    #
    # system.retriever.load_documents(data_dir)
    # # Perform a normal query
    # normal_query = "Good comedy ."
    # print("\nNormal Query Result:")
    # result = system.process_query(normal_query)
    # print("Status:", result["status"])
    # print("Response:", result["response"])
    # print("Retrieved Documents:", result["retrieved_documents"])
    # print("Blockchain Details:", result["blockchain_details"])
    #
    # # Perform a malicious query
    # malicious_query = "DROP TABLE users; SELECT * FROM sensitive_data;"
    # print("\nMalicious Query Result:")
    # result = system.process_query(malicious_query)
    # print("Status:", result["status"])
    # print("Message:", result.get("message"))