File size: 5,801 Bytes
b4b7246
 
7405474
b4b7246
 
a463e6e
3e269ec
7405474
b94e464
7405474
5398274
7405474
 
b94e464
 
 
 
3e269ec
759c15a
 
 
 
 
 
 
 
 
 
 
8ce7f13
759c15a
7405474
b94e464
b4b7246
b94e464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7405474
8ce7f13
b4b7246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a463e6e
b4b7246
8ce7f13
 
 
 
b4b7246
8ce7f13
b4b7246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ce7f13
b4b7246
 
6dd2090
 
8ce7f13
6dd2090
759c15a
 
 
 
 
 
 
 
 
 
 
 
6dd2090
759c15a
 
0a4227c
 
6dd2090
 
 
759c15a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from pathlib import Path

import streamlit as st
from googlesearch import search
import pandas as pd
import os
from rag_sec.document_search_system import DocumentSearchSystem
from chainguard.blockchain_logger import BlockchainLogger
from PIL import Image

# Blockchain Logger
blockchain_logger = BlockchainLogger()

# Directory for storing uploaded files
UPLOAD_DIR = "uploaded_files"
os.makedirs(UPLOAD_DIR, exist_ok=True)

# Initialize DocumentSearchSystem
@st.cache_resource
def initialize_system():
    """Initialize the DocumentSearchSystem and load documents."""
    system = DocumentSearchSystem(
        neo4j_uri="neo4j+s://0ca71b10.databases.neo4j.io",
        neo4j_user="neo4j",
        neo4j_password="HwGDOxyGS1-79nLeTiX5bx5ohoFSpvHCmTv8IRgt-lY"
    )
    system.retriever.load_documents()
    return system

# Initialize the system
system = initialize_system()

st.title("Memora: Secure File Upload and Search with Blockchain & Neo4j")
st.subheader("Personalized news and global updates at your fingertips")
# File Upload Section
uploaded_files = st.file_uploader("Upload your files", accept_multiple_files=True, type=['jpg', 'jpeg', 'png', 'mp4', 'avi'])

if uploaded_files:
    for uploaded_file in uploaded_files:
        # Save file locally
        file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
        with open(file_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.success(f"File saved locally: {file_path}")

        # Display uploaded file details
        if uploaded_file.type.startswith('image'):
            image = Image.open(uploaded_file)
            st.image(image, caption=uploaded_file.name, use_column_width=True)

        # Metadata Input
        album = st.text_input(f"Album for {uploaded_file.name}", "Default Album")
        tags = st.text_input(f"Tags for {uploaded_file.name} (comma-separated)", "")

        # Log Metadata and Transaction
        if st.button(f"Log Metadata for {uploaded_file.name}"):
            metadata = {"file_name": uploaded_file.name, "tags": tags.split(','), "album": album}
            blockchain_details = blockchain_logger.log_data(metadata)
            blockchain_hash = blockchain_details.get("block_hash", "N/A")

            # Use Neo4jHandler from DocumentSearchSystem to log the transaction
            system.neo4j_handler.log_relationships(uploaded_file.name, tags, blockchain_hash, [album])
            st.write(f"Metadata logged successfully! Blockchain Details: {blockchain_details}")

# Blockchain Integrity Validation
if st.button("Validate Blockchain Integrity"):
    is_valid = blockchain_logger.is_blockchain_valid()
    st.write("Blockchain Integrity:", "Valid βœ…" if is_valid else "Invalid ❌")

# Document Search Section
st.subheader("Search Documents")

# Google Search: User-Specific News
st.subheader("1. Latest News About You")
user_name = st.text_input("Enter your name or handle to search for recent news", value="Talex Maxim")

if st.button("Search News About Me"):
    if user_name:
        st.write(f"Searching Google for news about **{user_name}**...")
        try:
            results = list(search(user_name, num_results=5))
            if results:
                st.success(f"Top {len(results)} results for '{user_name}':")
                user_news_data = {"URL": results}
                df_user_news = pd.DataFrame(user_news_data)
                st.dataframe(df_user_news)
            else:
                st.warning("No recent news found about you.")
        except Exception as e:
            st.error(f"An error occurred during the search: {str(e)}")
    else:
        st.warning("Please enter your name or handle to search.")

# Google Search: Global News Categories
st.subheader("2. Global News Insights")
categories = ["Technology", "Sports", "Politics", "Entertainment", "Science"]
news_results = {}

if st.button("Fetch Global News"):
    try:
        for category in categories:
            st.write(f"Fetching news for **{category}**...")
            try:
                category_results = list(search(f"latest {category} news", num_results=3))
                news_results[category] = category_results
            except Exception as e:
                news_results[category] = [f"Error fetching news: {str(e)}"]

        # Display results
        for category, articles in news_results.items():
            st.write(f"### Top News in {category}:")
            for idx, article in enumerate(articles, start=1):
                st.write(f"{idx}. [Read here]({article})")
    except Exception as e:
        st.error(f"An error occurred while fetching global news: {str(e)}")

# Document Search
st.subheader("3. Search Documents")
query = st.text_input("Enter your query (e.g., 'sports news', 'machine learning')")

if st.button("Search Documents"):
    if query:
        result = system.process_query(query)
        if result["status"] == "success":
            st.success(f"Query processed successfully!")
            st.write("### Query Response:")
            st.write(result["response"])
            st.write("### Retrieved Documents:")
            for idx, doc in enumerate(result["retrieved_documents"], start=1):
                st.write(f"**Document {idx}:**")
                st.write(doc[:500])  # Display the first 500 characters
            st.write("### Blockchain Details:")
            st.json(result["blockchain_details"])
        elif result["status"] == "no_results":
            st.warning("No relevant documents found for your query.")
        elif result["status"] == "rejected":
            st.error(result["message"])
    else:
        st.warning("Please enter a query to search.")

# Debugging Section
if st.checkbox("Show Debug Information"):
    st.write(f"Total documents loaded: {len(system.retriever.documents)}")