Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from googlesearch import search | |
| import pandas as pd | |
| from pathlib import Path | |
| import os | |
| from PIL import Image | |
| from rag_sec.document_search_system import DocumentSearchSystem | |
| from chainguard.blockchain_logger import BlockchainLogger | |
| # Blockchain Logger | |
| blockchain_logger = BlockchainLogger() | |
| # Initialize DocumentSearchSystem | |
| def initialize_system(): | |
| """Initialize the DocumentSearchSystem and load documents.""" | |
| home_dir = Path(os.getenv("HOME", "/")) | |
| system = DocumentSearchSystem( | |
| neo4j_uri="neo4j+s://0ca71b10.databases.neo4j.io", | |
| neo4j_user="neo4j", | |
| neo4j_password="HwGDOxyGS1-79nLeTiX5bx5ohoFSpvHCmTv8IRgt-lY" | |
| ) | |
| system.retriever.load_documents() | |
| return system | |
| # Initialize and load system | |
| st.write("Initializing the Document Search System...") | |
| system = initialize_system() | |
| st.success("System initialized and documents loaded!") | |
| # Directory for storing uploaded files | |
| UPLOAD_DIR = "uploaded_files" | |
| os.makedirs(UPLOAD_DIR, exist_ok=True) | |
| # Streamlit Layout | |
| st.title("Memora: Secure File Upload and Search with Blockchain & Neo4j") | |
| st.subheader("Securely upload, organize, and query your files") | |
| # Google Search Section | |
| st.subheader("Find User Information via Google Search") | |
| search_query = st.text_input("Enter a name or topic to search on Google") | |
| if st.button("Google Search"): | |
| if search_query: | |
| try: | |
| results = list(search(search_query, num_results=5)) # Fetch top 5 results | |
| if results: | |
| st.success(f"Top {len(results)} results for '{search_query}':") | |
| result_data = {"URL": results} | |
| df = pd.DataFrame(result_data) | |
| st.dataframe(df) | |
| else: | |
| st.warning("No results found for the search query.") | |
| except Exception as e: | |
| st.error(f"An error occurred during the search: {str(e)}") | |
| else: | |
| st.warning("Please enter a search query.") | |
| # File Upload Section | |
| uploaded_files = st.file_uploader("Upload your files", accept_multiple_files=True, type=['jpg', 'jpeg', 'png', 'mp4', 'avi']) | |
| if uploaded_files: | |
| for uploaded_file in uploaded_files: | |
| # Save file locally | |
| file_path = os.path.join(UPLOAD_DIR, uploaded_file.name) | |
| with open(file_path, "wb") as f: | |
| f.write(uploaded_file.getbuffer()) | |
| st.success(f"File saved locally: {file_path}") | |
| # Display uploaded file details | |
| if uploaded_file.type.startswith('image'): | |
| image = Image.open(uploaded_file) | |
| st.image(image, caption=uploaded_file.name, use_column_width=True) | |
| # Metadata Input | |
| album = st.text_input(f"Album for {uploaded_file.name}", "Default Album") | |
| tags = st.text_input(f"Tags for {uploaded_file.name} (comma-separated)", "") | |
| # Log Metadata and Transaction | |
| if st.button(f"Log Metadata for {uploaded_file.name}"): | |
| metadata = {"file_name": uploaded_file.name, "tags": tags.split(','), "album": album} | |
| blockchain_details = blockchain_logger.log_data(metadata) | |
| blockchain_hash = blockchain_details.get("block_hash", "N/A") | |
| # Use Neo4jHandler from DocumentSearchSystem to log the transaction | |
| system.neo4j_handler.log_relationships(uploaded_file.name, tags, blockchain_hash, [album]) | |
| st.write(f"Metadata logged successfully! Blockchain Details: {blockchain_details}") | |
| # Blockchain Integrity Validation | |
| if st.button("Validate Blockchain Integrity"): | |
| is_valid = blockchain_logger.is_blockchain_valid() | |
| st.write("Blockchain Integrity:", "Valid ✅" if is_valid else "Invalid ❌") | |
| # Document Search Section | |
| st.subheader("Search Documents") | |
| # Query Input | |
| query = st.text_input("Enter your query (e.g., 'sports news', 'machine learning')") | |
| if st.button("Search"): | |
| if query: | |
| # Process query through the DocumentSearchSystem | |
| result = system.process_query(query) | |
| if result["status"] == "success": | |
| st.success(f"Query processed successfully!") | |
| st.write("### Query Response:") | |
| st.write(result["response"]) | |
| st.write("### Retrieved Documents:") | |
| for idx, doc in enumerate(result["retrieved_documents"], start=1): | |
| st.write(f"**Document {idx}:**") | |
| st.write(doc[:500]) # Display the first 500 characters | |
| st.write("### Blockchain Details:") | |
| st.json(result["blockchain_details"]) | |
| elif result["status"] == "no_results": | |
| st.warning("No relevant documents found for your query.") | |
| elif result["status"] == "rejected": | |
| st.error(result["message"]) | |
| else: | |
| st.warning("Please enter a query to search.") | |
| # Debugging Section | |
| if st.checkbox("Show Debug Information"): | |
| st.write(f"Total documents loaded: {len(system.retriever.documents)}") | |