Spaces:
Running
Running
talexm
commited on
Commit
•
ed26242
1
Parent(s):
1d44212
news-data retrival
Browse files- rag_sec/document_retriver.py +12 -36
rag_sec/document_retriver.py
CHANGED
@@ -1,47 +1,23 @@
|
|
1 |
import faiss
|
2 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
import numpy as np
|
|
|
4 |
|
5 |
class DocumentRetriever:
|
6 |
def __init__(self):
|
7 |
self.documents = []
|
8 |
-
self.vectorizer = TfidfVectorizer()
|
9 |
-
self.index = None
|
10 |
|
11 |
-
def load_documents(self
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
return
|
18 |
-
|
19 |
-
for file in data_dir.glob("*.txt"):
|
20 |
-
with open(file, "r", encoding="utf-8") as f:
|
21 |
-
self.documents.append(f.read())
|
22 |
-
|
23 |
-
print(f"Loaded {len(self.documents)} documents.")
|
24 |
-
|
25 |
-
# Create the FAISS index
|
26 |
-
self._build_index()
|
27 |
-
|
28 |
-
def _build_index(self):
|
29 |
-
# Generate TF-IDF vectors for documents
|
30 |
-
doc_vectors = self.vectorizer.fit_transform(self.documents).toarray()
|
31 |
-
|
32 |
-
# Create FAISS index
|
33 |
-
self.index = faiss.IndexFlatL2(doc_vectors.shape[1])
|
34 |
-
self.index.add(doc_vectors.astype(np.float32))
|
35 |
-
|
36 |
-
def retrieve(self, query, top_k=5):
|
37 |
-
if not self.index:
|
38 |
return ["Document retrieval is not initialized."]
|
|
|
|
|
39 |
|
40 |
-
# Vectorize the query
|
41 |
-
query_vector = self.vectorizer.transform([query]).toarray().astype(np.float32)
|
42 |
-
|
43 |
-
# Perform FAISS search
|
44 |
-
distances, indices = self.index.search(query_vector, top_k)
|
45 |
-
|
46 |
-
# Return matching documents
|
47 |
-
return [self.documents[i] for i in indices[0] if i < len(self.documents)]
|
|
|
1 |
import faiss
|
2 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
import numpy as np
|
4 |
+
from sklearn.datasets import fetch_20newsgroups
|
5 |
|
6 |
class DocumentRetriever:
|
7 |
def __init__(self):
|
8 |
self.documents = []
|
|
|
|
|
9 |
|
10 |
+
def load_documents(self):
|
11 |
+
"""Load 20 Newsgroups dataset."""
|
12 |
+
newsgroups_data = fetch_20newsgroups(subset='all')
|
13 |
+
self.documents = newsgroups_data.data
|
14 |
+
if not self.documents:
|
15 |
+
print("No documents loaded!")
|
16 |
|
17 |
+
def retrieve(self, query):
|
18 |
+
"""Retrieve documents related to the query."""
|
19 |
+
if not self.documents:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
return ["Document retrieval is not initialized."]
|
21 |
+
# Simple keyword match (can replace with advanced semantic similarity later)
|
22 |
+
return [doc for doc in self.documents if query.lower() in doc.lower()]
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|