import os from pathlib import Path from difflib import get_close_matches from transformers import pipeline class DocumentSearcher: def __init__(self): self.documents = [] # Load a pre-trained model for malicious intent detection self.malicious_detector = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") def load_imdb_data(self): home_dir = Path(os.getenv("HOME", "/")) data_dir = home_dir / "data-sets/aclImdb/train" pos_dir = data_dir / "pos" neg_dir = data_dir / "neg" print(f"Looking for positive reviews in: {pos_dir}") print(f"Looking for negative reviews in: {neg_dir}") if not pos_dir.exists() or not any(pos_dir.iterdir()): print("No positive reviews found.") if not neg_dir.exists() or not any(neg_dir.iterdir()): print("No negative reviews found.") for filename in pos_dir.iterdir(): with open(filename, "r", encoding="utf-8") as file: self.documents.append(file.read()) for filename in neg_dir.iterdir(): with open(filename, "r", encoding="utf-8") as file: self.documents.append(file.read()) print(f"Loaded {len(self.documents)} movie reviews from IMDB dataset.") def load_txt_files(self, txt_dir=None): if txt_dir is None: home_dir = Path(os.getenv("HOME", "/")) txt_dir = home_dir / "data-sets/txt-files/" if not txt_dir.exists(): print("No .txt files directory found.") return for filename in txt_dir.glob("*.txt"): with open(filename, "r", encoding="utf-8") as file: self.documents.append(file.read()) print(f"Loaded additional {len(self.documents)} documents from .txt files.") def is_query_malicious(self, query): # Use the pre-trained model to check if the query has malicious intent result = self.malicious_detector(query)[0] label = result['label'] score = result['score'] # Consider the query malicious if the sentiment is negative with high confidence if label == "NEGATIVE" and score > 0.8: print(f"Warning: Malicious query detected - Confidence: {score:.4f}") return True return False def search_documents(self, query): if self.is_query_malicious(query): return [{"document": "ANOMALY: Query blocked due to detected malicious intent.", "similarity": 0.0}] # Use fuzzy matching for normal queries matches = get_close_matches(query, self.documents, n=5, cutoff=0.3) if not matches: return [{"document": "No matching documents found.", "similarity": 0.0}] return [{"document": match[:100] + "..."} for match in matches] # Test the system with normal and malicious queries def test_document_search(): searcher = DocumentSearcher() # Load the IMDB movie reviews searcher.load_imdb_data() # Load additional .txt files searcher.load_txt_files() # Perform a normal query normal_query = "This movie had great acting and a compelling storyline." normal_results = searcher.search_documents(normal_query) print("Normal Query Results:") for result in normal_results: print(f"Document: {result['document']}") # Perform a query injection attack malicious_query = "DROP TABLE reviews; SELECT * FROM confidential_data;" attack_results = searcher.search_documents(malicious_query) print("\nMalicious Query Results:") for result in attack_results: print(f"Document: {result['document']}") if __name__ == "__main__": test_document_search()