#import fireducks.pandas as pd import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder, StandardScaler class DataProcessor: def __init__(self, csv_file): self.data = pd.read_csv(csv_file) self.label_encoders = {} self.scaler = StandardScaler() def preprocess_data(self): for column in ['IP', 'Hostnames', 'OS']: self.label_encoders[column] = LabelEncoder() self.data[column] = self.label_encoders[column].fit_transform(self.data[column].astype(str)) self.data['Port'] = self.scaler.fit_transform(self.data[['Port']]) self.data['Timestamp'] = pd.to_datetime(self.data['Timestamp']).astype(int) / 10**9 return self.data def get_features_and_labels(self, label_column='Anomaly'): if label_column not in self.data.columns: raise ValueError(f"Label column '{label_column}' not found in data.") X = self.data.drop([label_column], axis=1) y = self.data[label_column] return X, y def split_data(self, X, y, test_size=0.2, random_state=42): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) return X_train, X_test, y_train, y_test # # Example usage: # processor = DataProcessor('shodan_scan_results.csv') # processed_data = processor.preprocess_data() # X, y = processor.get_features_and_labels() # X_train, X_test, y_train, y_test = processor.split_data(X, y)