Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# https://python.langchain.com/docs/tutorials/rag/
|
2 |
+
import gradio as gr
|
3 |
+
from langchain import hub
|
4 |
+
from langchain_chroma import Chroma
|
5 |
+
from langchain_core.output_parsers import StrOutputParser
|
6 |
+
from langchain_core.runnables import RunnablePassthrough
|
7 |
+
from langchain_mistralai import MistralAIEmbeddings
|
8 |
+
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
|
9 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
10 |
+
from langchain_mistralai import ChatMistralAI
|
11 |
+
from langchain_community.document_loaders import PyPDFLoader
|
12 |
+
import requests
|
13 |
+
from pathlib import Path
|
14 |
+
from langchain_community.document_loaders import WebBaseLoader
|
15 |
+
from langchain_community.retrievers import ArxivRetriever
|
16 |
+
import bs4
|
17 |
+
from langchain_core.rate_limiters import InMemoryRateLimiter
|
18 |
+
from urllib.parse import urljoin
|
19 |
+
|
20 |
+
rate_limiter = InMemoryRateLimiter(
|
21 |
+
requests_per_second=0.1, # <-- MistralAI free. We can only make a request once every second
|
22 |
+
check_every_n_seconds=0.01, # Wake up every 100 ms to check whether allowed to make a request,
|
23 |
+
max_bucket_size=10, # Controls the maximum burst size.
|
24 |
+
)
|
25 |
+
"""
|
26 |
+
# get data
|
27 |
+
urlsfile = open("urls.txt")
|
28 |
+
urls = urlsfile.readlines()
|
29 |
+
urls = [url.replace("\n","") for url in urls]
|
30 |
+
urlsfile.close()
|
31 |
+
|
32 |
+
# Load, chunk and index the contents of the blog.
|
33 |
+
loader = WebBaseLoader(urls)
|
34 |
+
docs = loader.load()
|
35 |
+
|
36 |
+
# load arxiv papers
|
37 |
+
arxivfile = open("arxiv.txt")
|
38 |
+
arxivs = arxivfile.readlines()
|
39 |
+
arxivs = [arxiv.replace("\n","") for arxiv in arxivs]
|
40 |
+
arxivfile.close()
|
41 |
+
|
42 |
+
retriever = ArxivRetriever(
|
43 |
+
load_max_docs=2,
|
44 |
+
get_ful_documents=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
for arxiv in arxivs:
|
48 |
+
doc = retriever.invoke(arxiv)
|
49 |
+
doc[0].metadata['Published'] = str(doc[0].metadata['Published'])
|
50 |
+
docs.append(doc[0])
|
51 |
+
|
52 |
+
|
53 |
+
def format_docs(docs):
|
54 |
+
return "\n\n".join(doc.page_content for doc in docs)
|
55 |
+
|
56 |
+
def RAG(llm, docs, embeddings):
|
57 |
+
|
58 |
+
# Split text
|
59 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
60 |
+
splits = text_splitter.split_documents(docs)
|
61 |
+
|
62 |
+
# Create vector store
|
63 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
|
64 |
+
|
65 |
+
# Retrieve and generate using the relevant snippets of the documents
|
66 |
+
retriever = vectorstore.as_retriever()
|
67 |
+
|
68 |
+
# Prompt basis example for RAG systems
|
69 |
+
prompt = hub.pull("rlm/rag-prompt")
|
70 |
+
|
71 |
+
# Create the chain
|
72 |
+
rag_chain = (
|
73 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
74 |
+
| prompt
|
75 |
+
| llm
|
76 |
+
| StrOutputParser()
|
77 |
+
)
|
78 |
+
|
79 |
+
return rag_chain
|
80 |
+
|
81 |
+
# LLM model
|
82 |
+
llm = ChatMistralAI(model="mistral-large-latest", rate_limiter=rate_limiter)
|
83 |
+
|
84 |
+
# Embeddings
|
85 |
+
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
|
86 |
+
# embed_model = "nvidia/NV-Embed-v2"
|
87 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
|
88 |
+
# embeddings = MistralAIEmbeddings()
|
89 |
+
|
90 |
+
# RAG chain
|
91 |
+
rag_chain = RAG(llm, docs, embeddings)
|
92 |
+
|
93 |
+
def handle_prompt(message, history):
|
94 |
+
try:
|
95 |
+
# Stream output
|
96 |
+
out=""
|
97 |
+
for chunk in rag_chain.stream(message):
|
98 |
+
out += chunk
|
99 |
+
yield out
|
100 |
+
except:
|
101 |
+
raise gr.Error("Requests rate limit exceeded")
|
102 |
+
"""
|
103 |
+
|
104 |
+
def handle_prompt(message, history):
|
105 |
+
print(message)
|
106 |
+
|
107 |
+
|
108 |
+
greetingsmessage = "Hi, I'm your personal arXiv reader. Input the arXiv number of the paper:"
|
109 |
+
|
110 |
+
demo = gr.ChatInterface(handle_prompt, type="messages", title="ChangBot", theme=gr.themes.Soft(), description=greetingsmessage)
|
111 |
+
|
112 |
+
demo.launch()
|
113 |
+
|
114 |
+
example_questions = [
|
115 |
+
"Tell me more about SimBIG",
|
116 |
+
"How can you constrain neutrino mass with galaxies?",
|
117 |
+
"What is the DESI BGS?",
|
118 |
+
"What is SEDflow?",
|
119 |
+
"What are normalizing flows?"
|
120 |
+
]
|